Liana optical traits increase tropical forest albedo and reduce ecosystem productivity

© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 28(2022), 1 vom: 09. Jan., Seite 227-244
1. Verfasser: Meunier, Félicien (VerfasserIn)
Weitere Verfasser: Visser, Marco D, Shiklomanov, Alexey, Dietze, Michael C, Guzmán Q, J Antonio, Sanchez-Azofeifa, G Arturo, De Deurwaerder, Hannes P T, Krishna Moorthy, Sruthi M, Schnitzer, Stefan A, Marvin, David C, Longo, Marcos, Liu, Chang, Broadbent, Eben N, Almeyda Zambrano, Angelica M, Muller-Landau, Helene C, Detto, Matteo, Verbeeck, Hans
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Meta-Analysis PROSPECT-5 ecosystem demography model (ED2) forest albedo forest energy balance radiative transfer models structural parasitism tropical lianas
LEADER 01000naa a22002652 4500
001 NLM331920921
003 DE-627
005 20231225214532.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15928  |2 doi 
028 5 2 |a pubmed24n1106.xml 
035 |a (DE-627)NLM331920921 
035 |a (NLM)34651375 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Meunier, Félicien  |e verfasserin  |4 aut 
245 1 0 |a Liana optical traits increase tropical forest albedo and reduce ecosystem productivity 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.01.2022 
500 |a Date Revised 31.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Lianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees. Those trait discrepancies were hypothesized to be responsible for the competitive advantage of lianas over trees. Yet, in the absence of reliable modelling tools, it is impossible to unravel their impact on the forest energy balance, light competition, and on the liana success in Neotropical forests. To bridge this gap, we performed a meta-analysis of the literature to gather all published liana leaf optical spectra, as well as all canopy spectra measured over different levels of liana infestation. We then used a Bayesian data assimilation framework applied to two radiative transfer models (RTMs) covering the leaf and canopy scales to derive tropical tree and liana trait distributions, which finally informed a full dynamic vegetation model. According to the RTMs inversion, lianas grew thinner, more horizontal leaves with lower pigment concentrations. Those traits made the lianas very efficient at light interception and significantly modified the forest energy balance and its carbon cycle. While forest albedo increased by 14% in the shortwave, light availability was reduced in the understorey (-30% of the PAR radiation) and soil temperature decreased by 0.5°C. Those liana-specific traits were also responsible for a significant reduction of tree (-19%) and ecosystem (-7%) gross primary productivity (GPP) while lianas benefited from them (their GPP increased by +27%). This study provides a novel mechanistic explanation to the increase in liana abundance, new evidence of the impact of lianas on forest functioning, and paves the way for the evaluation of the large-scale impacts of lianas on forest biogeochemical cycles 
650 4 |a Journal Article 
650 4 |a Meta-Analysis 
650 4 |a PROSPECT-5 
650 4 |a ecosystem demography model (ED2) 
650 4 |a forest albedo 
650 4 |a forest energy balance 
650 4 |a radiative transfer models 
650 4 |a structural parasitism 
650 4 |a tropical lianas 
700 1 |a Visser, Marco D  |e verfasserin  |4 aut 
700 1 |a Shiklomanov, Alexey  |e verfasserin  |4 aut 
700 1 |a Dietze, Michael C  |e verfasserin  |4 aut 
700 1 |a Guzmán Q, J Antonio  |e verfasserin  |4 aut 
700 1 |a Sanchez-Azofeifa, G Arturo  |e verfasserin  |4 aut 
700 1 |a De Deurwaerder, Hannes P T  |e verfasserin  |4 aut 
700 1 |a Krishna Moorthy, Sruthi M  |e verfasserin  |4 aut 
700 1 |a Schnitzer, Stefan A  |e verfasserin  |4 aut 
700 1 |a Marvin, David C  |e verfasserin  |4 aut 
700 1 |a Longo, Marcos  |e verfasserin  |4 aut 
700 1 |a Liu, Chang  |e verfasserin  |4 aut 
700 1 |a Broadbent, Eben N  |e verfasserin  |4 aut 
700 1 |a Almeyda Zambrano, Angelica M  |e verfasserin  |4 aut 
700 1 |a Muller-Landau, Helene C  |e verfasserin  |4 aut 
700 1 |a Detto, Matteo  |e verfasserin  |4 aut 
700 1 |a Verbeeck, Hans  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 28(2022), 1 vom: 09. Jan., Seite 227-244  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:1  |g day:09  |g month:01  |g pages:227-244 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15928  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 1  |b 09  |c 01  |h 227-244