|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM33192076X |
003 |
DE-627 |
005 |
20231225214532.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202106465
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1106.xml
|
035 |
|
|
|a (DE-627)NLM33192076X
|
035 |
|
|
|a (NLM)34651356
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ravat, Prince
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a De Novo Synthesis of Free-Standing Flexible 2D Intercalated Nanofilm Uniform over Tens of cm2
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 02.06.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Of a variety of intercalated materials, 2D intercalated systems have attracted much attention both as materials per se, and as a platform to study atoms and molecules confined among nanometric layers. High-precision fabrication of such structures has, however, been a difficult task using the conventional top-down and bottom-up approaches. The de novo synthesis of a 3-nm-thick nanofilm intercalating a hydrogen-bonded network between two layers of fullerene molecules is reported here. The two-layered film can be further laminated into a multiply film either in situ or by sequential lamination. The 3 nm film forms uniformly over an area of several tens of cm2 at an air/water interface and can be transferred to either flat or perforated substrates. A free-standing film in air prepared by transfer to a gold comb electrode shows proton conductivity up to 1.4 × 10-4 S cm-1 . Electron-dose-dependent reversible bending of a free-standing 6-nm-thick nanofilm hung in a vacuum is observed under electron beam irradiation
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D material
|
650 |
|
4 |
|a fullerene
|
650 |
|
4 |
|a hydrogen-bonding network
|
650 |
|
4 |
|a intercalated structure
|
650 |
|
4 |
|a proton conductivity
|
650 |
|
4 |
|a supramolecular polymerization
|
650 |
|
4 |
|a ultrathin film
|
700 |
1 |
|
|a Uchida, Hikaru
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sekine, Ryosuke
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kamei, Ko
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yamamoto, Akihisa
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Konovalov, Oleg
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tanaka, Motomu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yamada, Teppei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Harano, Koji
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nakamura, Eiichi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 22 vom: 25. Juni, Seite e2106465
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:22
|g day:25
|g month:06
|g pages:e2106465
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202106465
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 22
|b 25
|c 06
|h e2106465
|