Dense Relational Image Captioning via Multi-Task Triple-Stream Networks

We introduce dense relational captioning, a novel image captioning task which aims to generate multiple captions with respect to relational information between objects in a visual scene. Relational captioning provides explicit descriptions for each relationship between object combinations. This fram...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 14. Nov., Seite 7348-7362
1. Verfasser: Kim, Dong-Jin (VerfasserIn)
Weitere Verfasser: Oh, Tae-Hyun, Choi, Jinsoo, Kweon, In So
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM331891581
003 DE-627
005 20231225214454.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3119754  |2 doi 
028 5 2 |a pubmed24n1106.xml 
035 |a (DE-627)NLM331891581 
035 |a (NLM)34648432 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Dong-Jin  |e verfasserin  |4 aut 
245 1 0 |a Dense Relational Image Captioning via Multi-Task Triple-Stream Networks 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We introduce dense relational captioning, a novel image captioning task which aims to generate multiple captions with respect to relational information between objects in a visual scene. Relational captioning provides explicit descriptions for each relationship between object combinations. This framework is advantageous in both diversity and amount of information, leading to a comprehensive image understanding based on relationships, e.g., relational proposal generation. For relational understanding between objects, the part-of-speech (POS; i.e., subject-object-predicate categories) can be a valuable prior information to guide the causal sequence of words in a caption. We enforce our framework to learn not only to generate captions but also to understand the POS of each word. To this end, we propose the multi-task triple-stream network (MTTSNet) which consists of three recurrent units responsible for each POS which is trained by jointly predicting the correct captions and POS for each word. In addition, we found that the performance of MTTSNet can be improved by modulating the object embeddings with an explicit relational module. We demonstrate that our proposed model can generate more diverse and richer captions, via extensive experimental analysis on large scale datasets and several metrics. Then, we present applications of our framework to holistic image captioning, scene graph generation, and retrieval tasks 
650 4 |a Journal Article 
700 1 |a Oh, Tae-Hyun  |e verfasserin  |4 aut 
700 1 |a Choi, Jinsoo  |e verfasserin  |4 aut 
700 1 |a Kweon, In So  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 14. Nov., Seite 7348-7362  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:14  |g month:11  |g pages:7348-7362 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3119754  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 14  |c 11  |h 7348-7362