PuC3H35 confers drought tolerance by enhancing lignin and proanthocyanidin biosynthesis in the roots of Populus ussuriensis

© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 233(2022), 1 vom: 01. Jan., Seite 390-408
1. Verfasser: Li, Dandan (VerfasserIn)
Weitere Verfasser: Yang, Jingli, Pak, Solme, Zeng, Minzhen, Sun, Jiali, Yu, Sen, He, Yuting, Li, Chenghao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't CCCH type zinc finger transcription factor drought stress lignification poplar proanthocyanidin reactive oxygen species (ROS) scavenging root drought tolerance Plant Proteins mehr... Proanthocyanidins Lignin 9005-53-2
Beschreibung
Zusammenfassung:© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
Since the roots are the very organ where plants first sense and respond drought stress, it is of great importance to better understand root responses to drought. Yet the underlying molecular mechanisms governing root responses to drought stress have been poorly understood. Here, we identified and functionally characterized a CCCH type transcription factor, PuC3H35, and its targets, anthocyanin reductase (PuANR) and early Arabidopsis aluminum induced1 (PuEARLI1), which are involved in mediating proanthocyanidin (PA) and lignin biosynthesis in response to drought stress in Populus ussuriensis root. PuC3H35 was root-specifically induced upon drought stress. Overexpressing PuC3H35 promoted PA and lignin biosynthesis and vascular tissue development, resulting in enhanced tolerance to drought stress by the means of anti-oxidation and mechanical supporting. We further demonstrated that PuC3H35 directly bound to the promoters of PuANR and PuEARLI1 and overexpressing PuANR or PuEARLI1 increased root PA or lignin levels, respectively, under drought stress. Taken together, these results revealed a novel regulatory pathway for drought tolerance, in which PuC3H35 mediated PA and lignin biosynthesis by collaboratively regulating 'PuC3H35-PuANR-PA' and 'PuC3H35-PuEARLI1-PuCCRs-lignin' modules in poplar roots
Beschreibung:Date Completed 06.01.2022
Date Revised 06.01.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.17799