|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM331840669 |
003 |
DE-627 |
005 |
20231225214346.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.17798
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1106.xml
|
035 |
|
|
|a (DE-627)NLM331840669
|
035 |
|
|
|a (NLM)34643280
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chu, Qinjie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Recent origination of circular RNAs in plants
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.01.2022
|
500 |
|
|
|a Date Revised 06.01.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
|
520 |
|
|
|a Circular RNA (circRNA) is a kind of new regulatory RNA with diverse biological functions. Numerous circRNAs have been identified in many plant species; however, evolution of plant circRNAs remains largely unknown. In this study, we assembled full-length sequences of 6519 rice (Oryza sativa) circRNAs and analyzed their conservation in another 46 plant species based on comparison of sequences and expression patterns. We found that, at the genomic level, 8.7% of the 6519 circRNAs were conserved in dicotyledonous plants and 49.1% in Oryza genus. Meanwhile, 57.8% of parental protein-coding genes of the rice circRNAs originated recently after divergence of monocotyledonous plants, implying recent origin of the majority of rice circRNAs, a conclusion further supported by the results based on analysis of 4663 full-length circRNAs in Arabidopsis thaliana. Accordingly, we proposed three models to address the origination of different types of circRNAs. Taken together, the results obtained in this study provide new insights for the evolutionary dynamics of plant circRNAs and candidate circRNAs for further functional exploration
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Oryza
|
650 |
|
4 |
|a conservation
|
650 |
|
4 |
|a evolution
|
650 |
|
4 |
|a full-length circRNA
|
650 |
|
4 |
|a origin
|
650 |
|
7 |
|a RNA, Circular
|2 NLM
|
650 |
|
7 |
|a RNA
|2 NLM
|
650 |
|
7 |
|a 63231-63-0
|2 NLM
|
700 |
1 |
|
|a Ding, Yuwen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Xiaoxu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ye, Chu-Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Qian-Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Longbiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fan, Longjiang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 233(2022), 1 vom: 01. Jan., Seite 515-525
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:233
|g year:2022
|g number:1
|g day:01
|g month:01
|g pages:515-525
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.17798
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 233
|j 2022
|e 1
|b 01
|c 01
|h 515-525
|