An automatized workflow from molecular dynamic simulation to quantum chemical methods to identify elementary reactions and compute reaction constants

© 2021 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 42(2021), 32 vom: 15. Dez., Seite 2264-2282
1. Verfasser: Schmitz, Gunnar (VerfasserIn)
Weitere Verfasser: Yönder, Özlem, Schnieder, Bastian, Schmid, Rochus, Hättig, Christof
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't DFT MD simulations ReaxFF automatized workflow reaction finder
LEADER 01000naa a22002652 4500
001 NLM331772884
003 DE-627
005 20231225214211.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26757  |2 doi 
028 5 2 |a pubmed24n1105.xml 
035 |a (DE-627)NLM331772884 
035 |a (NLM)34636424 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Schmitz, Gunnar  |e verfasserin  |4 aut 
245 1 3 |a An automatized workflow from molecular dynamic simulation to quantum chemical methods to identify elementary reactions and compute reaction constants 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.12.2021 
500 |a Date Revised 30.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a We present an automatized workflow which, starting from molecular dynamics simulations, identifies reaction events, filters them, and prepares them for accurate quantum chemical calculations using, for example, Density Functional Theory (DFT) or Coupled Cluster methods. The capabilities of the automatized workflow are demonstrated by the example of simulations for the combustion of some polycyclic aromatic hydrocarbons (PAHs). It is shown how key elementary reaction candidates are filtered out of a much larger set of redundant reactions and refined further. The molecular species in question are optimized using DFT and reaction energies, barrier heights, and reaction rates are calculated. The setup is general enough to include at this stage configurational sampling, which can be exploited in the future. Using the introduced machinery, we investigate how the observed reaction types depend on the gas atmosphere used in the molecular dynamics simulation. For the re-optimization on the DFT level, we show how the additional information needed to switch from reactive force-field to electronic structure calculations can be filled in and study how well ReaxFF and DFT agree with each other and shine light on the perspective of using more accurate semi-empirical methods in the MD simulation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a DFT 
650 4 |a MD simulations 
650 4 |a ReaxFF 
650 4 |a automatized workflow 
650 4 |a reaction finder 
700 1 |a Yönder, Özlem  |e verfasserin  |4 aut 
700 1 |a Schnieder, Bastian  |e verfasserin  |4 aut 
700 1 |a Schmid, Rochus  |e verfasserin  |4 aut 
700 1 |a Hättig, Christof  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 42(2021), 32 vom: 15. Dez., Seite 2264-2282  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:42  |g year:2021  |g number:32  |g day:15  |g month:12  |g pages:2264-2282 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26757  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2021  |e 32  |b 15  |c 12  |h 2264-2282