Bi-Modal Transfer Learning for Classifying Breast Cancers via Combined B-Mode and Ultrasound Strain Imaging

Although accurate detection of breast cancer still poses significant challenges, deep learning (DL) can support more accurate image interpretation. In this study, we develop a highly robust DL model based on combined B-mode ultrasound (B-mode) and strain elastography ultrasound (SE) images for class...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 69(2022), 1 vom: 03. Jan., Seite 222-232
1. Verfasser: Misra, Sampa (VerfasserIn)
Weitere Verfasser: Jeon, Seungwan, Managuli, Ravi, Lee, Seiyon, Kim, Gyuwon, Yoon, Chiho, Lee, Seungchul, Barr, Richard G, Kim, Chulhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM331748290
003 DE-627
005 20231225214137.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2021.3119251  |2 doi 
028 5 2 |a pubmed24n1105.xml 
035 |a (DE-627)NLM331748290 
035 |a (NLM)34633928 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Misra, Sampa  |e verfasserin  |4 aut 
245 1 0 |a Bi-Modal Transfer Learning for Classifying Breast Cancers via Combined B-Mode and Ultrasound Strain Imaging 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.01.2022 
500 |a Date Revised 10.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Although accurate detection of breast cancer still poses significant challenges, deep learning (DL) can support more accurate image interpretation. In this study, we develop a highly robust DL model based on combined B-mode ultrasound (B-mode) and strain elastography ultrasound (SE) images for classifying benign and malignant breast tumors. This study retrospectively included 85 patients, including 42 with benign lesions and 43 with malignancies, all confirmed by biopsy. Two deep neural network models, AlexNet and ResNet, were separately trained on combined 205 B-mode and 205 SE images (80% for training and 20% for validation) from 67 patients with benign and malignant lesions. These two models were then configured to work as an ensemble using both image-wise and layer-wise and tested on a dataset of 56 images from the remaining 18 patients. The ensemble model captures the diverse features present in the B-mode and SE images and also combines semantic features from AlexNet and ResNet models to classify the benign from the malignant tumors. The experimental results demonstrate that the accuracy of the proposed ensemble model is 90%, which is better than the individual models and the model trained using B-mode or SE images alone. Moreover, some patients that were misclassified by the traditional methods were correctly classified by the proposed ensemble method. The proposed ensemble DL model will enable radiologists to achieve superior detection efficiency owing to enhance classification accuracy for breast cancers in ultrasound (US) images 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Jeon, Seungwan  |e verfasserin  |4 aut 
700 1 |a Managuli, Ravi  |e verfasserin  |4 aut 
700 1 |a Lee, Seiyon  |e verfasserin  |4 aut 
700 1 |a Kim, Gyuwon  |e verfasserin  |4 aut 
700 1 |a Yoon, Chiho  |e verfasserin  |4 aut 
700 1 |a Lee, Seungchul  |e verfasserin  |4 aut 
700 1 |a Barr, Richard G  |e verfasserin  |4 aut 
700 1 |a Kim, Chulhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 69(2022), 1 vom: 03. Jan., Seite 222-232  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:69  |g year:2022  |g number:1  |g day:03  |g month:01  |g pages:222-232 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2021.3119251  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 69  |j 2022  |e 1  |b 03  |c 01  |h 222-232