Fe3O4/PPy-Coated Superhydrophilic Polymer Porous Foam : A Double Layered Photothermal Material with a Synergistic Light-to-Thermal Conversion Effect toward Desalination
Solar steam generation has been considered as one of the most promising strategies for production of fresh water using renewable solar energy. Herein, we prepared a polymer porous foam (HPSS) by a facile hydrothermal method. The HPSS presents a superhydrophilic wettability, an interpenetrating macro...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 42 vom: 26. Okt., Seite 12397-12408 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Solar steam generation has been considered as one of the most promising strategies for production of fresh water using renewable solar energy. Herein, we prepared a polymer porous foam (HPSS) by a facile hydrothermal method. The HPSS presents a superhydrophilic wettability, an interpenetrating macroporous structure, and low thermal conductivity, which can well satisfy the criteria as an ideal candidate for photothermal materials. The HPSS/Fe3O4/PPy (polypyrrole) evaporator, of which a Fe3O4/PPy binary optical system served as a light absorption layer and HPSS was used as a porous substrate, was constructed through in situ growth of Fe3O4 particles followed by interfacial polymerization of PPy on the surface of HPSS. HPSS/Fe3O4/PPy shows an excellent light absorption capacity (92%) and photothermal conversion performance, with the solar energy conversion efficiency reaching up to 94.7% under 1 sun irradiation, which is much higher than that of HPSS/PPy (84.8%) composed of a unitary PPy light absorption layer. Interestingly, the presence of Fe3O4 particles could make directional migration in a magnetic field possible, thus facilitating its recovery as a self-floating solar generator in an open water area. Moreover, the HPSS/Fe3O4/PPy evaporator displays outstanding salt resistance properties and stability in various saline solutions, thus having great potential in practical desalination |
---|---|
Beschreibung: | Date Revised 26.10.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.1c02013 |