Dynamically Tuneable Reflective Structural Coloration with Electroactive Conducting Polymer Nanocavities
© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 49 vom: 15. Dez., Seite e2105004 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2021
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article color-tuning conductive polymer electroactive nanocavity reflective displays structural colors |
| Zusammenfassung: | © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. Dynamic control of structural colors across the visible spectrum with high brightness has proven to be a difficult challenge. Here, this is addressed with a tuneable reflective nano-optical cavity that uses an electroactive conducting polymer (poly(thieno[3,4-b]thiophene)) as spacer layer. Electrochemical doping and dedoping of the polymer spacer layer provides reversible tuning of the cavity's structural color throughout the entire visible range and beyond. Furthermore, the cavity provides high peak reflectance that varies only slightly between the reduced and oxidized states of the polymer. The results indicate that the polymer undergoes large reversible thickness changes upon redox tuning, aided by changes in optical properties and low visible absorption. The electroactive cavity concept may find particular use in reflective displays, by opening for tuneable monopixels that eliminate limitations in brightness of traditional subpixel-based systems |
|---|---|
| Beschreibung: | Date Revised 13.10.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202105004 |