Conductive CuCo-Based Bimetal Organic Framework for Efficient Hydrogen Evolution
© 2021 Wiley-VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 49 vom: 01. Dez., Seite e2106781 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2021
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article conductive metal-organic frameworks density functional theory calculation doping hydrogen evolution reaction self-supported electrode |
Résumé: | © 2021 Wiley-VCH GmbH. Metal-organic frameworks (MOFs) with intrinsically porous structures and well-dispersed metal sites are promising candidates for electrocatalysis; however, the catalytic efficiencies of most MOFs are significantly limited by their impertinent adsorption/desorption energy of intermediates formed during electrocatalysis and very low electrical conductivity. Herein, Co is introduced into conductive Cu-catecholate (Cu-CAT) nanorod arrays directly grown on a flexible carbon cloth for hydrogen evolution reaction (HER). Electrochemical results show that the Co-incorporated Cu-CAT nanorod arrays only need 52 and 143 mV overpotentials to drive a current density of 10 mA cm-2 in alkaline and neutral media for HER, respectively, much lower than most of the reported non-noble metal-based electrocatalysts and comparable to the benchmark Pt/C electrocatalyst. Density functional theory calculations show that the introduction of Co can optimize the adsorption energy of hydrogen (ΔGH* ) of Cu sites, almost close to that of Pt (111). Furthermore, the adsorption energy of water ( Δ E H 2 O ) of Co sites in the CuCo-CAT is significantly lower than that of Cu sites upon coupling Cu with Co, effectively accelerating the Volmer step in the HER process. The findings, synergistic effect of bimetals, open a new avenue for the rational design of highly efficient MOF-based electrocatalysts |
---|---|
Description: | Date Revised 20.05.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202106781 |