Intensity-Aware Single-Image Deraining With Semantic and Color Regularization

Rain degrades image visual quality and disrupts object structures, obscuring their details and erasing their colors. Existing deraining methods are primarily based on modeling either visual appearances of rain or its physical characteristics (e.g., rain direction and density), and thus suffer from t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 08., Seite 8497-8509
1. Verfasser: Xu, Ke (VerfasserIn)
Weitere Verfasser: Tian, Xin, Yang, Xin, Yin, Baocai, Lau, Rynson W H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM331642565
003 DE-627
005 20250302134658.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3116794  |2 doi 
028 5 2 |a pubmed25n1105.xml 
035 |a (DE-627)NLM331642565 
035 |a (NLM)34623268 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Ke  |e verfasserin  |4 aut 
245 1 0 |a Intensity-Aware Single-Image Deraining With Semantic and Color Regularization 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Rain degrades image visual quality and disrupts object structures, obscuring their details and erasing their colors. Existing deraining methods are primarily based on modeling either visual appearances of rain or its physical characteristics (e.g., rain direction and density), and thus suffer from two common problems. First, due to the stochastic nature of rain, they tend to fail in recognizing rain streaks correctly, and wrongly remove image structures and details. Second, they fail to recover the image colors erased by heavy rain. In this paper, we address these two problems with the following three contributions. First, we propose a novel PHP block to aggregate comprehensive spatial and hierarchical information for removing rain streaks of different sizes. Second, we propose a novel network to first remove rain streaks, then recover objects structures/colors, and finally enhance details. Third, to train the network, we prepare a new dataset, and propose a novel loss function to introduce semantic and color regularization for deraining. Extensive experiments demonstrate the superiority of the proposed method over state-of-the-art deraining methods on both synthesized and real-world data, in terms of visual quality, quantitative accuracy, and running speed 
650 4 |a Journal Article 
700 1 |a Tian, Xin  |e verfasserin  |4 aut 
700 1 |a Yang, Xin  |e verfasserin  |4 aut 
700 1 |a Yin, Baocai  |e verfasserin  |4 aut 
700 1 |a Lau, Rynson W H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 08., Seite 8497-8509  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:08  |g pages:8497-8509 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3116794  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 08  |h 8497-8509