Toward Accurate Pixelwise Object Tracking via Attention Retrieval

Pixelwise single object tracking is challenging due to the competition of running speeds and segmentation accuracy. Current state-of-the-art real-time approaches seamlessly connect tracking and segmentation by sharing computation of the backbone network, e.g., SiamMask and D3S fork a light branch fr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 07., Seite 8553-8566
1. Verfasser: Zhang, Zhipeng (VerfasserIn)
Weitere Verfasser: Liu, Yufan, Li, Bing, Hu, Weiming, Peng, Houwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM331596954
003 DE-627
005 20231225213818.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3117077  |2 doi 
028 5 2 |a pubmed24n1105.xml 
035 |a (DE-627)NLM331596954 
035 |a (NLM)34618673 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Zhipeng  |e verfasserin  |4 aut 
245 1 0 |a Toward Accurate Pixelwise Object Tracking via Attention Retrieval 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Pixelwise single object tracking is challenging due to the competition of running speeds and segmentation accuracy. Current state-of-the-art real-time approaches seamlessly connect tracking and segmentation by sharing computation of the backbone network, e.g., SiamMask and D3S fork a light branch from the tracking model to predict segmentation mask. Although efficient, directly reusing features from tracking networks may harm the segmentation accuracy, since background clutter in the backbone feature tends to introduce false positives in segmentation. To mitigate this problem, we propose a unified tracking-retrieval-segmentation framework consisting of an attention retrieval network (ARN) and an iterative feedback network (IFN). Instead of segmenting the target inside the bounding box, the proposed framework performs soft spatial constraints on backbone features to obtain an accurate global segmentation map. Concretely, in ARN, a look-up-table (LUT) is first built by sufficiently using the information of the first frame. By retrieving it, a target-aware attention map is generated to suppress the negative influence of background clutter. To ulteriorly refine the contour of the segmentation, IFN iteratively enhances the features at different resolutions by taking the predicted mask as feedback guidance. Our framework sets a new state of the art on the recent pixelwise tracking benchmark VOT2020 and runs at 40 fps. Notably, the proposed model surpasses SiamMask by 11.7/4.2/5.5 points on VOT2020, DAVIS2016, and DAVIS2017, respectively. Code is available at https://github.com/JudasDie/SOTS 
650 4 |a Journal Article 
700 1 |a Liu, Yufan  |e verfasserin  |4 aut 
700 1 |a Li, Bing  |e verfasserin  |4 aut 
700 1 |a Hu, Weiming  |e verfasserin  |4 aut 
700 1 |a Peng, Houwen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 07., Seite 8553-8566  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:07  |g pages:8553-8566 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3117077  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 07  |h 8553-8566