AutoPedestrian : An Automatic Data Augmentation and Loss Function Search Scheme for Pedestrian Detection

Pedestrian detection is a challenging and hot research topic in the field of computer vision, especially for the crowded scenes where occlusion happens frequently. In this paper, we propose a novel AutoPedestrian scheme that automatically augments the pedestrian data and searches for suitable loss f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 07., Seite 8483-8496
1. Verfasser: Tang, Yi (VerfasserIn)
Weitere Verfasser: Li, Baopu, Liu, Min, Chen, Boyu, Wang, Yaonan, Ouyang, Wanli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM33159692X
003 DE-627
005 20250302134249.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3115672  |2 doi 
028 5 2 |a pubmed25n1105.xml 
035 |a (DE-627)NLM33159692X 
035 |a (NLM)34618670 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tang, Yi  |e verfasserin  |4 aut 
245 1 0 |a AutoPedestrian  |b An Automatic Data Augmentation and Loss Function Search Scheme for Pedestrian Detection 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Pedestrian detection is a challenging and hot research topic in the field of computer vision, especially for the crowded scenes where occlusion happens frequently. In this paper, we propose a novel AutoPedestrian scheme that automatically augments the pedestrian data and searches for suitable loss functions, aiming for better performance of pedestrian detection especially in crowded scenes. To our best knowledge, it is the first work to automatically search the optimal policy of data augmentation and loss function jointly for the pedestrian detection. To achieve the goal of searching the optimal augmentation scheme and loss function jointly, we first formulate the data augmentation policy and loss function as probability distributions based on different hyper-parameters. Then, we apply a double-loop scheme with importance-sampling to solve the optimization problem of data augmentation and loss function types efficiently. Comprehensive experiments on two popular benchmarks of CrowdHuman and CityPersons show the effectiveness of our proposed method. In particular, we achieve 40.58% in MR on CrowdHuman datasets and 11.3% in MR on CityPersons reasonable subset, yielding new state-of-the-art results on these two datasets 
650 4 |a Journal Article 
700 1 |a Li, Baopu  |e verfasserin  |4 aut 
700 1 |a Liu, Min  |e verfasserin  |4 aut 
700 1 |a Chen, Boyu  |e verfasserin  |4 aut 
700 1 |a Wang, Yaonan  |e verfasserin  |4 aut 
700 1 |a Ouyang, Wanli  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 07., Seite 8483-8496  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:07  |g pages:8483-8496 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3115672  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 07  |h 8483-8496