|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM331586630 |
003 |
DE-627 |
005 |
20231225213805.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202102703
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1105.xml
|
035 |
|
|
|a (DE-627)NLM331586630
|
035 |
|
|
|a (NLM)34617632
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Suwardi, Ady
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Machine Learning-Driven Biomaterials Evolution
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 31.03.2022
|
500 |
|
|
|a Date Revised 01.04.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Biomaterials is an exciting and dynamic field, which uses a collection of diverse materials to achieve desired biological responses. While there is constant evolution and innovation in materials with time, biomaterials research has been hampered by the relatively long development period required. In recent years, driven by the need to accelerate materials development, the applications of machine learning in materials science has progressed in leaps and bounds. The combination of machine learning with high-throughput theoretical predictions and high-throughput experiments (HTE) has shifted the traditional Edisonian (trial and error) paradigm to a data-driven paradigm. In this review, each type of biomaterial and their key properties and use cases are systematically discussed, followed by how machine learning can be applied in the development and design process. The discussions are classified according to various types of materials used including polymers, metals, ceramics, and nanomaterials, and implants using additive manufacturing. Last, the current gaps and potential of machine learning to further aid biomaterials discovery and application are also discussed
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a artificial intelligence
|
650 |
|
4 |
|a biomaterials
|
650 |
|
4 |
|a machine learning
|
650 |
|
7 |
|a Biocompatible Materials
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
700 |
1 |
|
|a Wang, FuKe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xue, Kun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Ming-Yong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Teo, Peili
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Pei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Shijie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Ye
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ye, Enyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Zibiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Loh, Xian Jun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 1 vom: 02. Jan., Seite e2102703
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:1
|g day:02
|g month:01
|g pages:e2102703
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202102703
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 1
|b 02
|c 01
|h e2102703
|