Machine Learning-Driven Biomaterials Evolution

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 1 vom: 02. Jan., Seite e2102703
1. Verfasser: Suwardi, Ady (VerfasserIn)
Weitere Verfasser: Wang, FuKe, Xue, Kun, Han, Ming-Yong, Teo, Peili, Wang, Pei, Wang, Shijie, Liu, Ye, Ye, Enyi, Li, Zibiao, Loh, Xian Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review artificial intelligence biomaterials machine learning Biocompatible Materials Polymers
LEADER 01000naa a22002652 4500
001 NLM331586630
003 DE-627
005 20231225213805.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202102703  |2 doi 
028 5 2 |a pubmed24n1105.xml 
035 |a (DE-627)NLM331586630 
035 |a (NLM)34617632 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Suwardi, Ady  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning-Driven Biomaterials Evolution 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.03.2022 
500 |a Date Revised 01.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Biomaterials is an exciting and dynamic field, which uses a collection of diverse materials to achieve desired biological responses. While there is constant evolution and innovation in materials with time, biomaterials research has been hampered by the relatively long development period required. In recent years, driven by the need to accelerate materials development, the applications of machine learning in materials science has progressed in leaps and bounds. The combination of machine learning with high-throughput theoretical predictions and high-throughput experiments (HTE) has shifted the traditional Edisonian (trial and error) paradigm to a data-driven paradigm. In this review, each type of biomaterial and their key properties and use cases are systematically discussed, followed by how machine learning can be applied in the development and design process. The discussions are classified according to various types of materials used including polymers, metals, ceramics, and nanomaterials, and implants using additive manufacturing. Last, the current gaps and potential of machine learning to further aid biomaterials discovery and application are also discussed 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a artificial intelligence 
650 4 |a biomaterials 
650 4 |a machine learning 
650 7 |a Biocompatible Materials  |2 NLM 
650 7 |a Polymers  |2 NLM 
700 1 |a Wang, FuKe  |e verfasserin  |4 aut 
700 1 |a Xue, Kun  |e verfasserin  |4 aut 
700 1 |a Han, Ming-Yong  |e verfasserin  |4 aut 
700 1 |a Teo, Peili  |e verfasserin  |4 aut 
700 1 |a Wang, Pei  |e verfasserin  |4 aut 
700 1 |a Wang, Shijie  |e verfasserin  |4 aut 
700 1 |a Liu, Ye  |e verfasserin  |4 aut 
700 1 |a Ye, Enyi  |e verfasserin  |4 aut 
700 1 |a Li, Zibiao  |e verfasserin  |4 aut 
700 1 |a Loh, Xian Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 1 vom: 02. Jan., Seite e2102703  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:1  |g day:02  |g month:01  |g pages:e2102703 
856 4 0 |u http://dx.doi.org/10.1002/adma.202102703  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 1  |b 02  |c 01  |h e2102703