Location matters : from changing a presumption about the Citrus tristeza virus tissue tropism to understanding the stem pitting disease

© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 233(2022), 2 vom: 15. Jan., Seite 631-638
1. Verfasser: Sun, Yong-Duo (VerfasserIn)
Weitere Verfasser: Folimonova, Svetlana Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Citrus tristeza virus citrus stem pitting virus spread xylem differentiation
Beschreibung
Zusammenfassung:© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
Stem pitting is a common virus-induced disease phenotype that tremendously impacts growth of perennial woody plants. How stem pitting develops in the infected trees remains unclear. Here, we assessed the development of stem pits upon infection of citrus by Citrus tristeza virus (CTV), which has been regarded as 'phloem-limited'. By taking advantage of a highly susceptible virus host - Citrus macrophylla - and a CTV isolate lacking a viral effector - the p33 protein, the development pattern of stem pitting was revealed via time-course observations and histological analyses. The stem pits result from the virus-colonized nonlignified 'gumming' malformations which are initiated by virus invasion into multiple spatially separated tissue layers - protophloem, metaphloem, and, unexpectedly, metaxylem. Notably, invasion of CTV into the unspecialized metaxylem cells interrupted the differentiation of the xylem tracheary elements. With the radial spread of CTV into the adjacent cells towards the stem periphery, the clusters of virus-colonized immature metaxylem cells extended in size, merging, at a certain stage, with virus-bearing cells in the protophloem and metaphloem layers. Collectively, our data provide a new insight into the process of the stem pitting development and the role of the xylem tissue in the virus pathogenicity
Beschreibung:Date Completed 24.03.2022
Date Revised 24.03.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.17777