Learning Dense Correspondences for Non-Rigid Point Clouds With Two-Stage Regression

We propose a novel deep learning method to predict dense correspondences for partial point clouds of non-rigidly deformable targets. Dense correspondences are learned in the form of vertex displacements of a template mesh towards the point clouds. A two-stage regression framework is proposed to esti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 15., Seite 8468-8482
1. Verfasser: Wang, Kangkan (VerfasserIn)
Weitere Verfasser: Zhang, Guofeng, Zheng, Huayu, Yang, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article