Learning Dense Correspondences for Non-Rigid Point Clouds With Two-Stage Regression

We propose a novel deep learning method to predict dense correspondences for partial point clouds of non-rigidly deformable targets. Dense correspondences are learned in the form of vertex displacements of a template mesh towards the point clouds. A two-stage regression framework is proposed to esti...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 15., Seite 8468-8482
Auteur principal: Wang, Kangkan (Auteur)
Autres auteurs: Zhang, Guofeng, Zheng, Huayu, Yang, Jian
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article