Object Detection in Aerial Images : A Large-Scale Benchmark and Challenges

In he past decade, object detection has achieved significant progress in natural images but not in aerial images, due to the massive variations in the scale and orientation of objects caused by the bird's-eye view of aerial images. More importantly, the lack of large-scale benchmarks has become...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 15. Nov., Seite 7778-7796
1. Verfasser: Ding, Jian (VerfasserIn)
Weitere Verfasser: Xue, Nan, Xia, Gui-Song, Bai, Xiang, Yang, Wen, Yang, Michael Ying, Belongie, Serge, Luo, Jiebo, Datcu, Mihai, Pelillo, Marcello, Zhang, Liangpei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM331549565
003 DE-627
005 20231225213719.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3117983  |2 doi 
028 5 2 |a pubmed24n1105.xml 
035 |a (DE-627)NLM331549565 
035 |a (NLM)34613910 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ding, Jian  |e verfasserin  |4 aut 
245 1 0 |a Object Detection in Aerial Images  |b A Large-Scale Benchmark and Challenges 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In he past decade, object detection has achieved significant progress in natural images but not in aerial images, due to the massive variations in the scale and orientation of objects caused by the bird's-eye view of aerial images. More importantly, the lack of large-scale benchmarks has become a major obstacle to the development of object detection in aerial images (ODAI). In this paper, we present a large-scale Dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI. The proposed DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial images. Based on this large-scale and well-annotated dataset, we build baselines covering 10 state-of-the-art algorithms with over 70 configurations, where the speed and accuracy performances of each model have been evaluated. Furthermore, we provide a code library for ODAI and build a website for evaluating different algorithms. Previous challenges run on DOTA have attracted more than 1300 teams worldwide. We believe that the expanded large-scale DOTA dataset, the extensive baselines, the code library and the challenges can facilitate the designs of robust algorithms and reproducible research on the problem of object detection in aerial images 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Xue, Nan  |e verfasserin  |4 aut 
700 1 |a Xia, Gui-Song  |e verfasserin  |4 aut 
700 1 |a Bai, Xiang  |e verfasserin  |4 aut 
700 1 |a Yang, Wen  |e verfasserin  |4 aut 
700 1 |a Yang, Michael Ying  |e verfasserin  |4 aut 
700 1 |a Belongie, Serge  |e verfasserin  |4 aut 
700 1 |a Luo, Jiebo  |e verfasserin  |4 aut 
700 1 |a Datcu, Mihai  |e verfasserin  |4 aut 
700 1 |a Pelillo, Marcello  |e verfasserin  |4 aut 
700 1 |a Zhang, Liangpei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 15. Nov., Seite 7778-7796  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:15  |g month:11  |g pages:7778-7796 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3117983  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 15  |c 11  |h 7778-7796