Facet-Dependent Surface Charge and Hydration of Semiconducting Nanoparticles at Variable pH

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 52 vom: 15. Dez., Seite e2106229
1. Verfasser: Su, Shaoqiang (VerfasserIn)
Weitere Verfasser: Siretanu, Igor, van den Ende, Dirk, Mei, Bastian, Mul, Guido, Mugele, Frieder
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article atomic force microscopy atomically resolved images facet-dependent surface charges faceted semiconducting SrTiO3 nanoparticles hydration structures nanoparticles semiconductor electrolyte interfaces
Beschreibung
Zusammenfassung:© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Understanding structure and function of solid-liquid interfaces is essential for the development of nanomaterials for various applications including heterogeneous catalysis in liquid phase processes and water splitting for storage of renewable electricity. The characteristic anisotropy of crystalline nanoparticles is believed to be essential for their performance but remains poorly understood and difficult to characterize. Dual scale atomic force microscopy is used to measure electrostatic and hydration forces of faceted semiconducting SrTiO3 nanoparticles in aqueous electrolyte at variable pH. The following are demonstrated: the ability to quantify strongly facet-dependent surface charges yielding isoelectric points of the dominant {100} and {110} facets that differ by as much as 2 pH units; facet-dependent accumulation of oppositely charged (SiO2 ) particles; and that atomic scale defects can be resolved but are in fact rare for the samples investigated. Atomically resolved images and facet-dependent oscillatory hydration forces suggest a microscopic charge generation mechanism that explains colloidal scale electrostatic forces
Beschreibung:Date Revised 13.10.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202106229