|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM331499177 |
003 |
DE-627 |
005 |
20231225213610.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202104246
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1104.xml
|
035 |
|
|
|a (DE-627)NLM331499177
|
035 |
|
|
|a (NLM)34608672
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wu, Peng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Revamping Lithium-Sulfur Batteries for High Cell-Level Energy Density by Synergistic Utilization of Polysulfide Additives and Artificial Solid-Electrolyte Interphase Layers
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.12.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Despite the high theoretical capacity of lithium-sulfur (Li-S) batteries, a high cell-level energy density and a long cycling life are barely achieved, mainly due to the large electrolyte-to-sulfur ratio, polysulfide (PS) shuttle causing the loss of active sulfur, and the formation of passivation layers on the Li anode. To raise the energy density, holding PS in the cathode has been the most popular approach. Still, it has failed, particularly, when the sulfur loading is high enough to have energy densities similar to those of commercial Li-ion batteries. Here, a practical approach of achieving high "cell-level" energy densities is attempted using lithium PS (LPS)-containing electrolytes instead of a pure electrolyte, reducing the electrolyte-to-sulfur ratio and PS diffusion out of the cathode due to concentration differences. Meanwhile, the persistent problems including PS passivation and Li dendrites are suppressed using Li2 S-phobic artificial solid-electrolyte interphase (A-SEI) layers on Li metal. The synergistic effects from the LPS additives and A-SEI result in a superior cell-level volumetric energy density of 650 Wh L-1 as well as large cumulative energy densities considering cycling life. This approach provides an important stepping stone to realize commercial Li-S batteries rivaling the current Li-ion batteries
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a artificial solid-electrolyte interphase
|
650 |
|
4 |
|a energy density
|
650 |
|
4 |
|a lithium-sulfur batteries
|
650 |
|
4 |
|a polysulfides
|
700 |
1 |
|
|a Dong, Mingxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tan, Jian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kang, Dongyun Aiden
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Choongho
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 48 vom: 05. Dez., Seite e2104246
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:48
|g day:05
|g month:12
|g pages:e2104246
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202104246
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 48
|b 05
|c 12
|h e2104246
|