|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM331440377 |
003 |
DE-627 |
005 |
20231225213452.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.chemmater.1c00913
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1104.xml
|
035 |
|
|
|a (DE-627)NLM331440377
|
035 |
|
|
|a (NLM)34602744
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Fanjul-Mosteirín, Noé
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-isocyanate Polyurethane Hydrogels
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 05.10.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 The Authors. Published by American Chemical Society.
|
520 |
|
|
|a The use of three-dimensional (3D) printable hydrogels for biomedical applications has attracted considerable attention as a consequence of the ability to precisely define the morphology of the printed object, allowing patients' needs to be targeted. However, the majority of hydrogels do not possess suitable mechanical properties to fulfill an adequate rheological profile for printability, and hence, 3D printing of cross-linked networks is challenging and normally requires postprinting modifications to obtain the desired scaffolds. In this work, we took advantage of the crystallization process of poly(ethylene glycol) to print non-isocyanate poly(hydroxyurethane) hydrogels with tunable mechanical properties. As a consequence of the crystallization process, the hydrogel modulus can be tuned up to 3 orders of magnitude upon heating up to 40 °C, offering an interesting strategy to directly 3D-print hydrogels without the need of postprinting cross-linking. Moreover, the absence of any toxicity makes these materials ideal candidates for biomedical applications
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Aguirresarobe, Robert
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sadaba, Naroa
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Larrañaga, Aitor
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Marin, Edurne
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Martin, Jaime
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ramos-Gomez, Nicolas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Arno, Maria C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sardon, Haritz
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dove, Andrew P
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Chemistry of materials : a publication of the American Chemical Society
|d 1998
|g 33(2021), 18 vom: 28. Sept., Seite 7194-7202
|w (DE-627)NLM098194763
|x 0897-4756
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:18
|g day:28
|g month:09
|g pages:7194-7202
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.chemmater.1c00913
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 18
|b 28
|c 09
|h 7194-7202
|