Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-isocyanate Polyurethane Hydrogels

© 2021 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 33(2021), 18 vom: 28. Sept., Seite 7194-7202
1. Verfasser: Fanjul-Mosteirín, Noé (VerfasserIn)
Weitere Verfasser: Aguirresarobe, Robert, Sadaba, Naroa, Larrañaga, Aitor, Marin, Edurne, Martin, Jaime, Ramos-Gomez, Nicolas, Arno, Maria C, Sardon, Haritz, Dove, Andrew P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM331440377
003 DE-627
005 20231225213452.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.1c00913  |2 doi 
028 5 2 |a pubmed24n1104.xml 
035 |a (DE-627)NLM331440377 
035 |a (NLM)34602744 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fanjul-Mosteirín, Noé  |e verfasserin  |4 aut 
245 1 0 |a Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-isocyanate Polyurethane Hydrogels 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 The Authors. Published by American Chemical Society. 
520 |a The use of three-dimensional (3D) printable hydrogels for biomedical applications has attracted considerable attention as a consequence of the ability to precisely define the morphology of the printed object, allowing patients' needs to be targeted. However, the majority of hydrogels do not possess suitable mechanical properties to fulfill an adequate rheological profile for printability, and hence, 3D printing of cross-linked networks is challenging and normally requires postprinting modifications to obtain the desired scaffolds. In this work, we took advantage of the crystallization process of poly(ethylene glycol) to print non-isocyanate poly(hydroxyurethane) hydrogels with tunable mechanical properties. As a consequence of the crystallization process, the hydrogel modulus can be tuned up to 3 orders of magnitude upon heating up to 40 °C, offering an interesting strategy to directly 3D-print hydrogels without the need of postprinting cross-linking. Moreover, the absence of any toxicity makes these materials ideal candidates for biomedical applications 
650 4 |a Journal Article 
700 1 |a Aguirresarobe, Robert  |e verfasserin  |4 aut 
700 1 |a Sadaba, Naroa  |e verfasserin  |4 aut 
700 1 |a Larrañaga, Aitor  |e verfasserin  |4 aut 
700 1 |a Marin, Edurne  |e verfasserin  |4 aut 
700 1 |a Martin, Jaime  |e verfasserin  |4 aut 
700 1 |a Ramos-Gomez, Nicolas  |e verfasserin  |4 aut 
700 1 |a Arno, Maria C  |e verfasserin  |4 aut 
700 1 |a Sardon, Haritz  |e verfasserin  |4 aut 
700 1 |a Dove, Andrew P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 33(2021), 18 vom: 28. Sept., Seite 7194-7202  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:18  |g day:28  |g month:09  |g pages:7194-7202 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.1c00913  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 18  |b 28  |c 09  |h 7194-7202