|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM331430584 |
003 |
DE-627 |
005 |
20231225213439.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202106046
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1104.xml
|
035 |
|
|
|a (DE-627)NLM331430584
|
035 |
|
|
|a (NLM)34601757
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Mendelson, Noah
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Coupling Spin Defects in a Layered Material to Nanoscale Plasmonic Cavities
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.01.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Spin defects in hexagonal boron nitride, and specifically the negatively charged boron vacancy (VB - ) centers, are emerging candidates for quantum sensing. However, the VB - defects suffer from low quantum efficiency and, as a result, exhibit weak photoluminescence. In this work, a scalable approach is demonstrated to dramatically enhance the VB - emission by coupling to a plasmonic gap cavity. The plasmonic cavity is composed of a flat gold surface and a silver cube, with few-layer hBN flakes positioned in between. Employing these plasmonic cavities, two orders of magnitude are extracted in photoluminescence enhancement associated with a corresponding twofold enhancement in optically detected magnetic resonance contrast. The work will be pivotal to progress in quantum sensing employing 2D materials, and in realization of nanophotonic devices with spin defects in hexagonal boron nitride
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a cavity
|
650 |
|
4 |
|a hexagonal boron nitride
|
650 |
|
4 |
|a plasmonics
|
650 |
|
4 |
|a spin defects
|
700 |
1 |
|
|a Ritika, Ritika
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kianinia, Mehran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Scott, John
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Sejeong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fröch, Johannes E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gazzana, Camilla
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Westerhausen, Mika
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiao, Licheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mohajerani, Seyed Sepehr
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Strauf, Stefan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Toth, Milos
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Aharonovich, Igor
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Zai-Quan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 1 vom: 02. Jan., Seite e2106046
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:1
|g day:02
|g month:01
|g pages:e2106046
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202106046
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 1
|b 02
|c 01
|h e2106046
|