Mechanistic Probing of Encapsulation and Confined Growth of Lithium Crystals in Carbonaceous Nanotubes

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 51 vom: 25. Dez., Seite e2105228
1. Verfasser: Wei, Ping (VerfasserIn)
Weitere Verfasser: Cheng, Yong, Yan, Xiaolin, Ye, Weibin, Lan, Xiangna, Wang, Lina, Sun, Jingjie, Yu, Zhiyang, Luo, Guangfu, Yang, Yong, Rummeli, Mark H, Wang, Ming-Sheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D Li crystals Li encapsulation amorphous carbon nanotubes in situ TEM lithium metal anodes spatially confined growth
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Encapsulation of lithium in the confined spaces within individual nanocapsules is intriguing and highly desirable for developing high-performance Li metal anodes. This work aims for a mechanistic understanding of Li encapsulation and its confined growth kinetics inside 1D enclosed spaces. To achieve this, amorphous carbon nanotubes are employed as a model host using in situ transmission electron microscopy. The carbon shells have dual roles, providing geometric/mechanical constraints and electron/ion transport channels, which profoundly alter the Li growth patterns. Li growth/dissolution takes place via atom addition/removal at the free surfaces through Li+ diffusion along the shells in the electric field direction, resulting in the formation of unusual Li structures, such as poly-crystalline nanowires and free-standing 2D ultrathin (1-2 nm) Li membranes. Such confined front-growth processes are dominated by Li {110} or {200} growing faces, distinct from the root growth of single-crystal Li dendrites outside the nanotubes. Controlled experiments show that high lithiophilicity/permeability, enabled by sufficient nitrogen/oxygen doping or pre-lithiation, is critical for the stable encapsulation of lithium inside carbonaceous nanocapsules. First-principles-based calculations reveal that N/O doping can reduce the diffusion barrier for Li+ penetration, and facilitate Li filling driven by energy minimization associated with the formation of low-energy Li/C interfaces
Beschreibung:Date Revised 22.12.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202105228