VBridge : Connecting the Dots Between Features and Data to Explain Healthcare Models

Machine learning (ML) is increasingly applied to Electronic Health Records (EHRs) to solve clinical prediction tasks. Although many ML models perform promisingly, issues with model transparency and interpretability limit their adoption in clinical practice. Directly using existing explainable ML tec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 1 vom: 01. Jan., Seite 378-388
1. Verfasser: Cheng, Furui (VerfasserIn)
Weitere Verfasser: Liu, Dongyu, Du, Fan, Lin, Yanna, Zytek, Alexandra, Li, Haomin, Qu, Huamin, Veeramachaneni, Kalyan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM331379554
003 DE-627
005 20231225213330.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3114836  |2 doi 
028 5 2 |a pubmed24n1104.xml 
035 |a (DE-627)NLM331379554 
035 |a (NLM)34596543 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Furui  |e verfasserin  |4 aut 
245 1 0 |a VBridge  |b Connecting the Dots Between Features and Data to Explain Healthcare Models 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2022 
500 |a Date Revised 13.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Machine learning (ML) is increasingly applied to Electronic Health Records (EHRs) to solve clinical prediction tasks. Although many ML models perform promisingly, issues with model transparency and interpretability limit their adoption in clinical practice. Directly using existing explainable ML techniques in clinical settings can be challenging. Through literature surveys and collaborations with six clinicians with an average of 17 years of clinical experience, we identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence. Following an iterative design process, we further designed and developed VBridge, a visual analytics tool that seamlessly incorporates ML explanations into clinicians' decision-making workflow. The system includes a novel hierarchical display of contribution-based feature explanations and enriched interactions that connect the dots between ML features, explanations, and data. We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians, showing that visually associating model explanations with patients' situational records can help clinicians better interpret and use model predictions when making clinician decisions. We further derived a list of design implications for developing future explainable ML tools to support clinical decision-making 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Dongyu  |e verfasserin  |4 aut 
700 1 |a Du, Fan  |e verfasserin  |4 aut 
700 1 |a Lin, Yanna  |e verfasserin  |4 aut 
700 1 |a Zytek, Alexandra  |e verfasserin  |4 aut 
700 1 |a Li, Haomin  |e verfasserin  |4 aut 
700 1 |a Qu, Huamin  |e verfasserin  |4 aut 
700 1 |a Veeramachaneni, Kalyan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 1 vom: 01. Jan., Seite 378-388  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:1  |g day:01  |g month:01  |g pages:378-388 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3114836  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 1  |b 01  |c 01  |h 378-388