STRATISFIMAL LAYOUT : A modular optimization model for laying out layered node-link network visualizations

Node-link visualizations are a familiar and powerful tool for displaying the relationships in a network. The readability of these visualizations highly depends on the spatial layout used for the nodes. In this paper, we focus on computing layered layouts, in which nodes are aligned on a set of paral...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 1 vom: 01. Jan., Seite 324-334
1. Verfasser: di Bartolomeo, Sara (VerfasserIn)
Weitere Verfasser: Riedewald, Mirek, Gatterbauer, Wolfgang, Dunne, Cody
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Node-link visualizations are a familiar and powerful tool for displaying the relationships in a network. The readability of these visualizations highly depends on the spatial layout used for the nodes. In this paper, we focus on computing layered layouts, in which nodes are aligned on a set of parallel axes to better expose hierarchical or sequential relationships. Heuristic-based layouts are widely used as they scale well to larger networks and usually create readable, albeit sub-optimal, visualizations. We instead use a layout optimization model that prioritizes optimality - as compared to scalability - because an optimal solution not only represents the best attainable result, but can also serve as a baseline to evaluate the effectiveness of layout heuristics. We take an important step towards powerful and flexible network visualization by proposing Stratisfimal Layout, a modular integer-linear-programming formulation that can consider several important readability criteria simultaneously - crossing reduction, edge bendiness, and nested and multi-layer groups. The layout can be adapted to diverse use cases through its modularity. Individual features can be enabled and customized depending on the application. We provide open-source and documented implementations of the layout, both for web-based and desktop visualizations. As a proof-of-concept, we apply it to the problem of visualizing complicated SQL queries, which have features that we believe cannot be addressed by existing layout optimization models. We also include a benchmark network generator and the results of an empirical evaluation to assess the performance trade-offs of our design choices. A full version of this paper with all appendices, data, and source code is available at osf.io/qdyt9 with live examples at https://visdunneright.github.io/stratisfimal/
Beschreibung:Date Revised 05.01.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2021.3114756