THALIS : Human-Machine Analysis of Longitudinal Symptoms in Cancer Therapy

Although cancer patients survive years after oncologic therapy, they are plagued with long-lasting or permanent residual symptoms, whose severity, rate of development, and resolution after treatment vary largely between survivors. The analysis and interpretation of symptoms is complicated by their p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 1 vom: 30. Jan., Seite 151-161
1. Verfasser: Floricel, Carla (VerfasserIn)
Weitere Verfasser: Nipu, Nafiul, Biggs, Mikayla, Wentzel, Andrew, Canahuate, Guadalupe, Van Dijk, Lisanne, Mohamed, Abdallah, Fuller, C David, Marai, G Elisabeta
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM331332256
003 DE-627
005 20250302132005.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3114810  |2 doi 
028 5 2 |a pubmed25n1104.xml 
035 |a (DE-627)NLM331332256 
035 |a (NLM)34591766 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Floricel, Carla  |e verfasserin  |4 aut 
245 1 0 |a THALIS  |b Human-Machine Analysis of Longitudinal Symptoms in Cancer Therapy 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2022 
500 |a Date Revised 04.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Although cancer patients survive years after oncologic therapy, they are plagued with long-lasting or permanent residual symptoms, whose severity, rate of development, and resolution after treatment vary largely between survivors. The analysis and interpretation of symptoms is complicated by their partial co-occurrence, variability across populations and across time, and, in the case of cancers that use radiotherapy, by further symptom dependency on the tumor location and prescribed treatment. We describe THALIS, an environment for visual analysis and knowledge discovery from cancer therapy symptom data, developed in close collaboration with oncology experts. Our approach leverages unsupervised machine learning methodology over cohorts of patients, and, in conjunction with custom visual encodings and interactions, provides context for new patients based on patients with similar diagnostic features and symptom evolution. We evaluate this approach on data collected from a cohort of head and neck cancer patients. Feedback from our clinician collaborators indicates that THALIS supports knowledge discovery beyond the limits of machines or humans alone, and that it serves as a valuable tool in both the clinic and symptom research 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Nipu, Nafiul  |e verfasserin  |4 aut 
700 1 |a Biggs, Mikayla  |e verfasserin  |4 aut 
700 1 |a Wentzel, Andrew  |e verfasserin  |4 aut 
700 1 |a Canahuate, Guadalupe  |e verfasserin  |4 aut 
700 1 |a Van Dijk, Lisanne  |e verfasserin  |4 aut 
700 1 |a Mohamed, Abdallah  |e verfasserin  |4 aut 
700 1 |a Fuller, C David  |e verfasserin  |4 aut 
700 1 |a Marai, G Elisabeta  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 1 vom: 30. Jan., Seite 151-161  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:28  |g year:2022  |g number:1  |g day:30  |g month:01  |g pages:151-161 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3114810  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 1  |b 30  |c 01  |h 151-161