SurRF : Unsupervised Multi-View Stereopsis by Learning Surface Radiance Field

The recent success in supervised multi-view stereopsis (MVS) relies on the onerously collected real-world 3D data. While the latest differentiable rendering techniques enable unsupervised MVS, they are restricted to discretized (e.g., point cloud) or implicit geometric representation, suffering from...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 30. Nov., Seite 7912-7927
1. Verfasser: Zhang, Jinzhi (VerfasserIn)
Weitere Verfasser: Ji, Mengqi, Wang, Guangyu, Xue, Zhiwei, Wang, Shengjin, Fang, Lu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM331332159
003 DE-627
005 20250302132004.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3116695  |2 doi 
028 5 2 |a pubmed25n1104.xml 
035 |a (DE-627)NLM331332159 
035 |a (NLM)34591757 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Jinzhi  |e verfasserin  |4 aut 
245 1 0 |a SurRF  |b Unsupervised Multi-View Stereopsis by Learning Surface Radiance Field 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The recent success in supervised multi-view stereopsis (MVS) relies on the onerously collected real-world 3D data. While the latest differentiable rendering techniques enable unsupervised MVS, they are restricted to discretized (e.g., point cloud) or implicit geometric representation, suffering from either low integrity for a textureless region or less geometric details for complex scenes. In this paper, we propose SurRF, an unsupervised MVS pipeline by learning Surface Radiance Field, i.e., a radiance field defined on a continuous and explicit 2D surface. Our key insight is that, in a local region, the explicit surface can be gradually deformed from a continuous initialization along view-dependent camera rays by differentiable rendering. That enables us to define the radiance field only on a 2D deformable surface rather than in a dense volume of 3D space, leading to compact representation while maintaining complete shape and realistic texture for large-scale complex scenes. We experimentally demonstrate that the proposed SurRF produces competitive results over the-state-of-the-art on various real-world challenging scenes, without any 3D supervision. Moreover, SurRF shows great potential in owning the joint advantages of mesh (scene manipulation), continuous surface (high geometric resolution), and radiance field (realistic rendering) 
650 4 |a Journal Article 
700 1 |a Ji, Mengqi  |e verfasserin  |4 aut 
700 1 |a Wang, Guangyu  |e verfasserin  |4 aut 
700 1 |a Xue, Zhiwei  |e verfasserin  |4 aut 
700 1 |a Wang, Shengjin  |e verfasserin  |4 aut 
700 1 |a Fang, Lu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 30. Nov., Seite 7912-7927  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:30  |g month:11  |g pages:7912-7927 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3116695  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 30  |c 11  |h 7912-7927