A Memory Efficient Encoding for Ray Tracing Large Unstructured Data

In theory, efficient and high-quality rendering of unstructured data should greatly benefit from modern GPUs, but in practice, GPUs are often limited by the large amount of memory that large meshes require for element representation and for sample reconstruction acceleration structures. We describe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 1 vom: 29. Jan., Seite 583-592
1. Verfasser: Wald, Ingo (VerfasserIn)
Weitere Verfasser: Morrical, Nate, Zellmann, Stefan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM331285924
003 DE-627
005 20231225213128.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3114869  |2 doi 
028 5 2 |a pubmed24n1104.xml 
035 |a (DE-627)NLM331285924 
035 |a (NLM)34587085 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wald, Ingo  |e verfasserin  |4 aut 
245 1 2 |a A Memory Efficient Encoding for Ray Tracing Large Unstructured Data 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In theory, efficient and high-quality rendering of unstructured data should greatly benefit from modern GPUs, but in practice, GPUs are often limited by the large amount of memory that large meshes require for element representation and for sample reconstruction acceleration structures. We describe a memory-optimized encoding for large unstructured meshes that efficiently encodes both the unstructured mesh and corresponding sample reconstruction acceleration structure, while still allowing for fast random-access sampling as required for rendering. We demonstrate that for large data our encoding allows for rendering even the 2.9 billion element Mars Lander on a single off-the-shelf GPU-and the largest 6.3 billion version on a pair of such GPUs 
650 4 |a Journal Article 
700 1 |a Morrical, Nate  |e verfasserin  |4 aut 
700 1 |a Zellmann, Stefan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 1 vom: 29. Jan., Seite 583-592  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:1  |g day:29  |g month:01  |g pages:583-592 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3114869  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 1  |b 29  |c 01  |h 583-592