An Evaluation-Focused Framework for Visualization Recommendation Algorithms

Although we have seen a proliferation of algorithms for recommending visualizations, these algorithms are rarely compared with one another, making it difficult to ascertain which algorithm is best for a given visual analysis scenario. Though several formal frameworks have been proposed in response,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 1 vom: 29. Jan., Seite 346-356
1. Verfasser: Zeng, Zehua (VerfasserIn)
Weitere Verfasser: Moh, Phoebe, Du, Fan, Hoffswell, Jane, Lee, Tak Yeon, Malik, Sana, Koh, Eunyee, Battle, Leilani
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM331285576
003 DE-627
005 20231225213128.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3114814  |2 doi 
028 5 2 |a pubmed24n1104.xml 
035 |a (DE-627)NLM331285576 
035 |a (NLM)34587050 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zeng, Zehua  |e verfasserin  |4 aut 
245 1 3 |a An Evaluation-Focused Framework for Visualization Recommendation Algorithms 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Although we have seen a proliferation of algorithms for recommending visualizations, these algorithms are rarely compared with one another, making it difficult to ascertain which algorithm is best for a given visual analysis scenario. Though several formal frameworks have been proposed in response, we believe this issue persists because visualization recommendation algorithms are inadequately specified from an evaluation perspective. In this paper, we propose an evaluation-focused framework to contextualize and compare a broad range of visualization recommendation algorithms. We present the structure of our framework, where algorithms are specified using three components: (1) a graph representing the full space of possible visualization designs, (2) the method used to traverse the graph for potential candidates for recommendation, and (3) an oracle used to rank candidate designs. To demonstrate how our framework guides the formal comparison of algorithmic performance, we not only theoretically compare five existing representative recommendation algorithms, but also empirically compare four new algorithms generated based on our findings from the theoretical comparison. Our results show that these algorithms behave similarly in terms of user performance, highlighting the need for more rigorous formal comparisons of recommendation algorithms to further clarify their benefits in various analysis scenarios 
650 4 |a Journal Article 
700 1 |a Moh, Phoebe  |e verfasserin  |4 aut 
700 1 |a Du, Fan  |e verfasserin  |4 aut 
700 1 |a Hoffswell, Jane  |e verfasserin  |4 aut 
700 1 |a Lee, Tak Yeon  |e verfasserin  |4 aut 
700 1 |a Malik, Sana  |e verfasserin  |4 aut 
700 1 |a Koh, Eunyee  |e verfasserin  |4 aut 
700 1 |a Battle, Leilani  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 1 vom: 29. Jan., Seite 346-356  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:1  |g day:29  |g month:01  |g pages:346-356 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3114814  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 1  |b 29  |c 01  |h 346-356