matExplorer : Visual Exploration on Predicting Ionic Conductivity for Solid-state Electrolytes

Lithium ion batteries (LIBs) are widely used as important energy sources for mobile phones, electric vehicles, and drones. Experts have attempted to replace liquid electrolytes with solid electrolytes that have wider electrochemical window and higher stability due to the potential safety risks, such...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 1 vom: 29. Jan., Seite 65-75
1. Verfasser: Pu, Jiansu (VerfasserIn)
Weitere Verfasser: Shao, Hui, Gao, Boyang, Zhu, Zhengguo, Zhu, Yanlin, Rao, Yunbo, Xiang, Yong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM33128555X
003 DE-627
005 20231225213128.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3114812  |2 doi 
028 5 2 |a pubmed24n1104.xml 
035 |a (DE-627)NLM33128555X 
035 |a (NLM)34587048 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pu, Jiansu  |e verfasserin  |4 aut 
245 1 0 |a matExplorer  |b Visual Exploration on Predicting Ionic Conductivity for Solid-state Electrolytes 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Lithium ion batteries (LIBs) are widely used as important energy sources for mobile phones, electric vehicles, and drones. Experts have attempted to replace liquid electrolytes with solid electrolytes that have wider electrochemical window and higher stability due to the potential safety risks, such as electrolyte leakage, flammable solvents, poor thermal stability, and many side reactions caused by liquid electrolytes. However, finding suitable alternative materials using traditional approaches is very difficult due to the incredibly high cost in searching. Machine learning (ML)-based methods are currently introduced and used for material prediction. However, learning tools designed for domain experts to conduct intuitive performance comparison and analysis of ML models are rare. In this case, we propose an interactive visualization system for experts to select suitable ML models and understand and explore the predication results comprehensively. Our system uses a multifaceted visualization scheme designed to support analysis from various perspectives, such as feature distribution, data similarity, model performance, and result presentation. Case studies with actual lab experiments have been conducted by the experts, and the final results confirmed the effectiveness and helpfulness of our system 
650 4 |a Journal Article 
700 1 |a Shao, Hui  |e verfasserin  |4 aut 
700 1 |a Gao, Boyang  |e verfasserin  |4 aut 
700 1 |a Zhu, Zhengguo  |e verfasserin  |4 aut 
700 1 |a Zhu, Yanlin  |e verfasserin  |4 aut 
700 1 |a Rao, Yunbo  |e verfasserin  |4 aut 
700 1 |a Xiang, Yong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 1 vom: 29. Jan., Seite 65-75  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:1  |g day:29  |g month:01  |g pages:65-75 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3114812  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 1  |b 29  |c 01  |h 65-75