Multi-View Learning a Decomposable Affinity Matrix via Tensor Self-Representation on Grassmann Manifold

Multi-view clustering aims to partition objects into potential categories by utilizing cross-view information. One of the core issues is to sufficiently leverage different views to learn a latent subspace, within which the clustering task is performed. Recently, it has been shown that representing t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 8396-8409
1. Verfasser: Wang, Haiyan (VerfasserIn)
Weitere Verfasser: Han, Guoqiang, Zhang, Bin, Tao, Guihua, Cai, Hongmin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM331285177
003 DE-627
005 20231225213127.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3114995  |2 doi 
028 5 2 |a pubmed24n1104.xml 
035 |a (DE-627)NLM331285177 
035 |a (NLM)34587010 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Haiyan  |e verfasserin  |4 aut 
245 1 0 |a Multi-View Learning a Decomposable Affinity Matrix via Tensor Self-Representation on Grassmann Manifold 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-view clustering aims to partition objects into potential categories by utilizing cross-view information. One of the core issues is to sufficiently leverage different views to learn a latent subspace, within which the clustering task is performed. Recently, it has been shown that representing the multi-view data by a tensor and then learning a latent self-expressive tensor is effective. However, early works mainly focus on learning essential tensor representation from multi-view data and the resulted affinity matrix is considered as a byproduct or is computed by a simple average in Euclidean space, thereby destroying the intrinsic clustering structure. To that end, here we proposed a novel multi-view clustering method to directly learn a well-structured affinity matrix driven by the clustering task on Grassmann manifold. Specifically, we firstly employed a tensor learning model to unify multiple feature spaces into a latent low-rank tensor space. Then each individual view was merged on Grassmann manifold to obtain both an integrative subspace and a consensus affinity matrix, driven by clustering task. The two parts are modeled by a unified objective function and optimized jointly to mine a decomposable affinity matrix. Extensive experiments on eight real-world datasets show that our method achieves superior performances over other popular methods 
650 4 |a Journal Article 
700 1 |a Han, Guoqiang  |e verfasserin  |4 aut 
700 1 |a Zhang, Bin  |e verfasserin  |4 aut 
700 1 |a Tao, Guihua  |e verfasserin  |4 aut 
700 1 |a Cai, Hongmin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 8396-8409  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:8396-8409 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3114995  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 8396-8409