Unsupervised Abstract Reasoning for Raven's Problem Matrices

Raven's Progressive Matrices (RPM) is highly correlated with human intelligence, and it has been widely used to measure the abstract reasoning ability of humans. In this paper, to study the abstract reasoning capability of deep neural networks, we propose the first unsupervised learning method...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 8332-8341
1. Verfasser: Zhuo, Tao (VerfasserIn)
Weitere Verfasser: Huang, Qiang, Kankanhalli, Mohan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM331285169
003 DE-627
005 20231225213127.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3114987  |2 doi 
028 5 2 |a pubmed24n1104.xml 
035 |a (DE-627)NLM331285169 
035 |a (NLM)34587009 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhuo, Tao  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Abstract Reasoning for Raven's Problem Matrices 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2021 
500 |a Date Revised 14.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Raven's Progressive Matrices (RPM) is highly correlated with human intelligence, and it has been widely used to measure the abstract reasoning ability of humans. In this paper, to study the abstract reasoning capability of deep neural networks, we propose the first unsupervised learning method for solving RPM problems. Since the ground truth labels are not allowed, we design a pseudo target based on the prior constraints of the RPM formulation to approximate the ground-truth label, which effectively converts the unsupervised learning strategy into a supervised one. However, the correct answer is wrongly labelled by the pseudo target, and thus the noisy contrast will lead to inaccurate model training. To alleviate this issue, we propose to improve the model performance with negative answers. Moreover, we develop a decentralization method to adapt the feature representation to different RPM problems. Extensive experiments on three datasets demonstrate that our method even outperforms some of the supervised approaches. Our code is available at https://github.com/visiontao/ncd 
650 4 |a Journal Article 
700 1 |a Huang, Qiang  |e verfasserin  |4 aut 
700 1 |a Kankanhalli, Mohan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 8332-8341  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:8332-8341 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3114987  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 8332-8341