Scene Adaptive Online Surveillance Video Synopsis via Dynamic Tube Rearrangement Using Octree

Visual surveillance produces a significant amount of raw video data that can be time consuming to browse and analyze. In this work, we present a video synopsis methodology called "scene adaptive online video synopsis via dynamic tube rearrangement using octree (SSOcT)" that can effectively...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 8318-8331
1. Verfasser: Yang, Yoonsik (VerfasserIn)
Weitere Verfasser: Kim, Haksub, Choi, Heeseung, Chae, Seungho, Kim, Ig-Jae
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM331285150
003 DE-627
005 20231225213127.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3114986  |2 doi 
028 5 2 |a pubmed24n1104.xml 
035 |a (DE-627)NLM331285150 
035 |a (NLM)34587008 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Yoonsik  |e verfasserin  |4 aut 
245 1 0 |a Scene Adaptive Online Surveillance Video Synopsis via Dynamic Tube Rearrangement Using Octree 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Visual surveillance produces a significant amount of raw video data that can be time consuming to browse and analyze. In this work, we present a video synopsis methodology called "scene adaptive online video synopsis via dynamic tube rearrangement using octree (SSOcT)" that can effectively condense input surveillance videos. Our method entailed summarizing the input video by analyzing scene characteristics and determining an effective spatio-temporal 3D structure for video synopsis. For this purpose, we first analyzed the attributes of each extracted tube with respect to scene geometry and complexity. Then, we adaptively grouped the tubes using an online grouping algorithm that exploits these scene characteristics. Finally, the tube groups were dynamically rearranged using the proposed octree-based algorithm that efficiently inserted and refined tubes containing high spatio-temporal movements in real time. Extensive video synopsis experimental results are provided, demonstrating the effectiveness and efficiency of our method in summarizing real-world surveillance videos with diverse scene characteristics 
650 4 |a Journal Article 
700 1 |a Kim, Haksub  |e verfasserin  |4 aut 
700 1 |a Choi, Heeseung  |e verfasserin  |4 aut 
700 1 |a Chae, Seungho  |e verfasserin  |4 aut 
700 1 |a Kim, Ig-Jae  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 8318-8331  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:8318-8331 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3114986  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 8318-8331