Unsupervised Deep Learning based Variational Autoencoder Model for COVID-19 Diagnosis and Classification

© 2021 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters. - 1998. - 151(2021) vom: 26. Nov., Seite 267-274
1. Verfasser: Mansour, Romany F (VerfasserIn)
Weitere Verfasser: Escorcia-Gutierrez, José, Gamarra, Margarita, Gupta, Deepak, Castillo, Oscar, Kumar, Sachin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Pattern recognition letters
Schlagworte:Journal Article COVID-19 Deep learning Image classification Unsupervised learning Variational autoencoder
LEADER 01000caa a22002652 4500
001 NLM331078686
003 DE-627
005 20240909232023.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.patrec.2021.08.018  |2 doi 
028 5 2 |a pubmed24n1528.xml 
035 |a (DE-627)NLM331078686 
035 |a (NLM)34566223 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mansour, Romany F  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Deep Learning based Variational Autoencoder Model for COVID-19 Diagnosis and Classification 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Elsevier B.V. All rights reserved. 
520 |a At present times, COVID-19 has become a global illness and infected people has increased exponentially and it is difficult to control due to the non-availability of large quantity of testing kits. Artificial intelligence (AI) techniques including machine learning (ML), deep learning (DL), and computer vision (CV) approaches find useful for the recognition, analysis, and prediction of COVID-19. Several ML and DL techniques are trained to resolve the supervised learning issue. At the same time, the potential measure of the unsupervised learning technique is quite high. Therefore, unsupervised learning techniques can be designed in the existing DL models for proficient COVID-19 prediction. In this view, this paper introduces a novel unsupervised DL based variational autoencoder (UDL-VAE) model for COVID-19 detection and classification. The UDL-VAE model involved adaptive Wiener filtering (AWF) based preprocessing technique to enhance the image quality. Besides, Inception v4 with Adagrad technique is employed as a feature extractor and unsupervised VAE model is applied for the classification process. In order to verify the superior diagnostic performance of the UDL-VAE model, a set of experimentation was carried out to highlight the effective outcome of the UDL-VAE model. The obtained experimental values showcased the effectual results of the UDL-VAE model with the higher accuracy of 0.987 and 0.992 on the binary and multiple classes respectively 
650 4 |a Journal Article 
650 4 |a COVID-19 
650 4 |a Deep learning 
650 4 |a Image classification 
650 4 |a Unsupervised learning 
650 4 |a Variational autoencoder 
700 1 |a Escorcia-Gutierrez, José  |e verfasserin  |4 aut 
700 1 |a Gamarra, Margarita  |e verfasserin  |4 aut 
700 1 |a Gupta, Deepak  |e verfasserin  |4 aut 
700 1 |a Castillo, Oscar  |e verfasserin  |4 aut 
700 1 |a Kumar, Sachin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Pattern recognition letters  |d 1998  |g 151(2021) vom: 26. Nov., Seite 267-274  |w (DE-627)NLM098154265  |x 0167-8655  |7 nnns 
773 1 8 |g volume:151  |g year:2021  |g day:26  |g month:11  |g pages:267-274 
856 4 0 |u http://dx.doi.org/10.1016/j.patrec.2021.08.018  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 151  |j 2021  |b 26  |c 11  |h 267-274