Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates : The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance

© 2021 American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 33(2021), 9 vom: 11. Mai, Seite 3139-3154
1. Verfasser: Castellanos-Rubio, Idoia (VerfasserIn)
Weitere Verfasser: Arriortua, Oihane, Marcano, Lourdes, Rodrigo, Irati, Iglesias-Rojas, Daniela, Barón, Ander, Olazagoitia-Garmendia, Ane, Olivi, Luca, Plazaola, Fernando, Fdez-Gubieda, M Luisa, Castellanos-Rubio, Ainara, Garitaonandia, José S, Orue, Iñaki, Insausti, Maite
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM330985914
003 DE-627
005 20231225212456.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.0c04794  |2 doi 
028 5 2 |a pubmed24n1103.xml 
035 |a (DE-627)NLM330985914 
035 |a (NLM)34556898 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Castellanos-Rubio, Idoia  |e verfasserin  |4 aut 
245 1 0 |a Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates  |b The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 American Chemical Society. 
520 |a The currently existing magnetic hyperthermia treatments usually need to employ very large doses of magnetic nanoparticles (MNPs) and/or excessively high excitation conditions (H × f > 1010 A/m s) to reach the therapeutic temperature range that triggers cancer cell death. To make this anticancer therapy truly minimally invasive, it is crucial the development of improved chemical routes that give rise to monodisperse MNPs with high saturation magnetization and negligible dipolar interactions. Herein, we present an innovative chemical route to synthesize Zn-doped magnetite NPs based on the thermolysis of two kinds of organometallic precursors: (i) a mixture of two monometallic oleates (FeOl + ZnOl), and (ii) a bimetallic iron-zinc oleate (Fe3-y Zn y Ol). These approaches have allowed tailoring the size (10-50 nm), morphology (spherical, cubic, and cuboctahedral), and zinc content (Zn x Fe3-x O4, 0.05 < x < 0.25) of MNPs with high saturation magnetization (≥90 Am2/kg at RT). The oxidation state and the local symmetry of Zn2+ and Fe2+/3+ cations have been investigated by means of X-ray absorption near-edge structure (XANES) spectroscopy, while the Fe center distribution and vacancies within the ferrite lattice have been examined in detail through Mössbauer spectroscopy, which has led to an accurate determination of the stoichiometry in each sample. To achieve good biocompatibility and colloidal stability in physiological conditions, the Zn x Fe3-x O4 NPs have been coated with high-molecular-weight poly(ethylene glycol) (PEG). The magnetothermal efficiency of Zn x Fe3-x O4PEG samples has been systematically analyzed in terms of composition, size, and morphology, making use of the latest-generation AC magnetometer that is able to reach 90 mT. The heating capacity of Zn0.06Fe2.9 4O4 cuboctahedrons of 25 nm reaches a maximum value of 3652 W/g (at 40 kA/m and 605 kHz), but most importantly, they reach a highly satisfactory value (600 W/g) under strict safety excitation conditions (at 36 kA/m and 125 kHz). Additionally, the excellent heating power of the system is kept identical both immobilized in agar and in the cellular environment, proving the great potential and reliability of this platform for magnetic hyperthermia therapies 
650 4 |a Journal Article 
700 1 |a Arriortua, Oihane  |e verfasserin  |4 aut 
700 1 |a Marcano, Lourdes  |e verfasserin  |4 aut 
700 1 |a Rodrigo, Irati  |e verfasserin  |4 aut 
700 1 |a Iglesias-Rojas, Daniela  |e verfasserin  |4 aut 
700 1 |a Barón, Ander  |e verfasserin  |4 aut 
700 1 |a Olazagoitia-Garmendia, Ane  |e verfasserin  |4 aut 
700 1 |a Olivi, Luca  |e verfasserin  |4 aut 
700 1 |a Plazaola, Fernando  |e verfasserin  |4 aut 
700 1 |a Fdez-Gubieda, M Luisa  |e verfasserin  |4 aut 
700 1 |a Castellanos-Rubio, Ainara  |e verfasserin  |4 aut 
700 1 |a Garitaonandia, José S  |e verfasserin  |4 aut 
700 1 |a Orue, Iñaki  |e verfasserin  |4 aut 
700 1 |a Insausti, Maite  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 33(2021), 9 vom: 11. Mai, Seite 3139-3154  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:9  |g day:11  |g month:05  |g pages:3139-3154 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.0c04794  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 9  |b 11  |c 05  |h 3139-3154