Deep Multiple Instance Hashing for Fast Multi-Object Image Search

Multi-keyword query is widely supported in text search engines. However, an analogue in image retrieval systems, multi-object query, is rarely studied. Meanwhile, traditional object-based image retrieval methods often involve multiple steps separately. In this work, we propose a weakly-supervised De...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 23., Seite 7995-8007
1. Verfasser: Zhao, Wanqing (VerfasserIn)
Weitere Verfasser: Guan, Ziyu, Luo, Hangzai, Peng, Jinye, Fan, Jianping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM330966448
003 DE-627
005 20231225212430.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3112011  |2 doi 
028 5 2 |a pubmed24n1103.xml 
035 |a (DE-627)NLM330966448 
035 |a (NLM)34554911 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Wanqing  |e verfasserin  |4 aut 
245 1 0 |a Deep Multiple Instance Hashing for Fast Multi-Object Image Search 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.09.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-keyword query is widely supported in text search engines. However, an analogue in image retrieval systems, multi-object query, is rarely studied. Meanwhile, traditional object-based image retrieval methods often involve multiple steps separately. In this work, we propose a weakly-supervised Deep Multiple Instance Hashing (DMIH) approach for multi-object image retrieval. Our DMIH approach, which leverages a popular CNN model to build the end-to-end relation between a raw image and the binary hash codes of its multiple objects, can support multi-object queries effectively and integrate object detection with hashing learning seamlessly. We treat object detection as a binary multiple instance learning (MIL) problem and such instances are automatically extracted from multi-scale convolutional feature maps. We also design a conditional random field (CRF) module to capture both the semantic and spatial relations among different class labels. For hashing training, we sample image pairs to learn their semantic relationships in terms of hash codes of the most probable proposals for owned labels as guided by object predictors. The two objectives benefit each other in a multi-task learning scheme. Finally, a two-level inverted index method is proposed to further speed up the retrieval of multi-object queries. Our DMIH approach outperforms state-of-the-arts on public benchmarks for object-based image retrieval and achieves promising results for multi-object queries 
650 4 |a Journal Article 
700 1 |a Guan, Ziyu  |e verfasserin  |4 aut 
700 1 |a Luo, Hangzai  |e verfasserin  |4 aut 
700 1 |a Peng, Jinye  |e verfasserin  |4 aut 
700 1 |a Fan, Jianping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 23., Seite 7995-8007  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:23  |g pages:7995-8007 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3112011  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 23  |h 7995-8007