Synergistic Therapy of a Naturally Inspired Glycopolymer-Based Biomimetic Nanomedicine Harnessing Tumor Genomic Instability

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 45 vom: 22. Nov., Seite e2104594
1. Verfasser: Duan, Zhenyu (VerfasserIn)
Weitere Verfasser: Luo, Qiang, Dai, Xinghang, Li, Xiaoling, Gu, Lei, Zhu, Hongyan, Tian, Xiaohe, Zhang, Hu, Gong, Qiyong, Gu, Zhongwei, Luo, Kui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bioinspired and biomimetic nanomedicine branched polymers glycopolymers stimuli-responsive drug delivery systems synergistic therapy tumor genomic instability Antineoplastic Agents Drug Carriers Phthalazines mehr... Piperazines Polymethacrylic Acids Polysaccharides Reactive Oxygen Species Chlorophyll 1406-65-1 pyropheophorbide a 24533-72-0 Duxon 40704-75-4 olaparib WOH1JD9AR8
LEADER 01000naa a22002652 4500
001 NLM330963759
003 DE-627
005 20231225212427.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202104594  |2 doi 
028 5 2 |a pubmed24n1103.xml 
035 |a (DE-627)NLM330963759 
035 |a (NLM)34554623 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Duan, Zhenyu  |e verfasserin  |4 aut 
245 1 0 |a Synergistic Therapy of a Naturally Inspired Glycopolymer-Based Biomimetic Nanomedicine Harnessing Tumor Genomic Instability 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.02.2022 
500 |a Date Revised 23.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Inspired by natural saccharide-protein complexes, a stimuli-responsive biodegradable and branched glycopolymer-pyropheophorbide-a (Ppa) conjugate (BSP) with saccharide units for cancer therapy is constructed. A linear glycopolymeric conjugate (LSP), a branched glycopolymeric conjugate (BShP) from Ppa with long carbon chains, and a branched conjugate (BHSP) based on poly[N-(2-hydroxypropyl) methacrylamide] (polyHPMA) without saccharide units are prepared as controls. Through structure-activity relationship studies, BSP with a 3D network structure forms stable nanostructures via weak intermolecular interactions, regulating the stacking state of Ppa to improve the singlet oxygen quantum yield and the corresponding photodynamic therapy (PDT) effect. BSP shows high loading of olaparib, and are further coated with tumor cell membranes, resulting in a biomimetic nanomedicine (CM-BSPO). CM-BSPO shows highly efficient tumor targeting and cellular internalization properties. The engulfment of CM-BSPO accompanied with laser irradiation results in a prominent antitumor effect, evidenced by disruption of cell cycles in tumor cells, increased apoptosis and DNA damage, and subsequent inhibition of repair for damaged DNA. The mechanism for the synergistic effect from PDT and olaparib is unveiled at the genetic and protein level through transcriptome analysis. Overall, this biodegradable and branched glycopolymer-drug conjugate could be effectively optimized as a biomimetic nanomedicine for cancer therapy 
650 4 |a Journal Article 
650 4 |a bioinspired and biomimetic nanomedicine 
650 4 |a branched polymers 
650 4 |a glycopolymers 
650 4 |a stimuli-responsive drug delivery systems 
650 4 |a synergistic therapy 
650 4 |a tumor genomic instability 
650 7 |a Antineoplastic Agents  |2 NLM 
650 7 |a Drug Carriers  |2 NLM 
650 7 |a Phthalazines  |2 NLM 
650 7 |a Piperazines  |2 NLM 
650 7 |a Polymethacrylic Acids  |2 NLM 
650 7 |a Polysaccharides  |2 NLM 
650 7 |a Reactive Oxygen Species  |2 NLM 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a pyropheophorbide a  |2 NLM 
650 7 |a 24533-72-0  |2 NLM 
650 7 |a Duxon  |2 NLM 
650 7 |a 40704-75-4  |2 NLM 
650 7 |a olaparib  |2 NLM 
650 7 |a WOH1JD9AR8  |2 NLM 
700 1 |a Luo, Qiang  |e verfasserin  |4 aut 
700 1 |a Dai, Xinghang  |e verfasserin  |4 aut 
700 1 |a Li, Xiaoling  |e verfasserin  |4 aut 
700 1 |a Gu, Lei  |e verfasserin  |4 aut 
700 1 |a Zhu, Hongyan  |e verfasserin  |4 aut 
700 1 |a Tian, Xiaohe  |e verfasserin  |4 aut 
700 1 |a Zhang, Hu  |e verfasserin  |4 aut 
700 1 |a Gong, Qiyong  |e verfasserin  |4 aut 
700 1 |a Gu, Zhongwei  |e verfasserin  |4 aut 
700 1 |a Luo, Kui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 45 vom: 22. Nov., Seite e2104594  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:45  |g day:22  |g month:11  |g pages:e2104594 
856 4 0 |u http://dx.doi.org/10.1002/adma.202104594  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 45  |b 22  |c 11  |h e2104594