Multi-Task Learning Framework for Motion Estimation and Dynamic Scene Deblurring

Motion blur, which disturbs human and machine perceptions of a scene, has been considered an unnecessary artifact that should be removed. However, the blur can be a useful clue to understanding the dynamic scene, since various sources of motion generate different types of artifacts. Motivated by the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 22., Seite 8170-8183
1. Verfasser: Jung, Hyungjoo (VerfasserIn)
Weitere Verfasser: Kim, Youngjung, Jang, Hyunsung, Ha, Namkoo, Sohn, Kwanghoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM330926608
003 DE-627
005 20231225212340.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3113185  |2 doi 
028 5 2 |a pubmed24n1103.xml 
035 |a (DE-627)NLM330926608 
035 |a (NLM)34550887 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jung, Hyungjoo  |e verfasserin  |4 aut 
245 1 0 |a Multi-Task Learning Framework for Motion Estimation and Dynamic Scene Deblurring 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Motion blur, which disturbs human and machine perceptions of a scene, has been considered an unnecessary artifact that should be removed. However, the blur can be a useful clue to understanding the dynamic scene, since various sources of motion generate different types of artifacts. Motivated by the relationship between motion and blur, we propose a motion-aware feature learning framework for dynamic scene deblurring through multi-task learning. Our multi-task framework simultaneously estimates a deblurred image and a motion field from a blurred image. We design the encoder-decoder architectures for two tasks, and the encoder part is shared between them. Our motion estimation network could effectively distinguish between different types of blur, which facilitates image deblurring. Understanding implicit motion information through image deblurring could improve the performance of motion estimation. In addition to sharing the network between two tasks, we propose a reblurring loss function to optimize the overall parameters in our multi-task architecture. We provide an intensive analysis of complementary tasks to show the effectiveness of our multi-task framework. Furthermore, the experimental results demonstrate that the proposed method outperforms the state-of-the-art deblurring methods with respect to both qualitative and quantitative evaluations 
650 4 |a Journal Article 
700 1 |a Kim, Youngjung  |e verfasserin  |4 aut 
700 1 |a Jang, Hyunsung  |e verfasserin  |4 aut 
700 1 |a Ha, Namkoo  |e verfasserin  |4 aut 
700 1 |a Sohn, Kwanghoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 22., Seite 8170-8183  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:22  |g pages:8170-8183 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3113185  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 22  |h 8170-8183