Preparation of Asymmetric Vesicles with Trapped CsCl Avoids Osmotic Imbalance, Non-Physiological External Solutions, and Minimizes Leakage

The natural asymmetry of cellular membranes influences their properties. In recent years, methodologies for preparing asymmetric vesicles have been developed that rely on cyclodextrin-catalyzed exchange of lipids between donor lipid multilamellar vesicles and acceptor lipid unilamellar vesicles, and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 39 vom: 05. Okt., Seite 11611-11617
1. Verfasser: Li, Ming-Hao (VerfasserIn)
Weitere Verfasser: Raleigh, Daniel P, London, Erwin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Unilamellar Liposomes
Beschreibung
Zusammenfassung:The natural asymmetry of cellular membranes influences their properties. In recent years, methodologies for preparing asymmetric vesicles have been developed that rely on cyclodextrin-catalyzed exchange of lipids between donor lipid multilamellar vesicles and acceptor lipid unilamellar vesicles, and the subsequent separation of the, now asymmetric, acceptor vesicles from the donors. Isolation is often accomplished by preloading acceptor vesicles with a high concentration of sucrose, typically 25% (w/w), and separating from donor and cyclodextrin by sucrose gradient centrifugation. We found that when the asymmetric vesicles prepared using methyl-α-cyclodextrin exchange were dispersed under hypotonic conditions using physiological salt solutions, there was enhanced leakage of an entrapped probe, 6-carboxyfluorescein. Studies with symmetric vesicles showed this was due to osmotic pressure and was specific to hypotonic solutions. Inclusion of cholesterol partly reduced leakage but did not completely eliminate it. To avoid having to use hypotonic conditions or to suspend vesicles at nonphysiological solute concentrations to minimize leakage, a method for preparing asymmetric vesicles using acceptor vesicle-entrapped CsCl at a physiological ion concentration (100 mM) was developed. Asymmetric vesicles prepared with the entrapped CsCl protocol were highly resistant to 6-carboxyfluorescein leakage out of the vesicles
Beschreibung:Date Completed 21.10.2021
Date Revised 16.09.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c01971