Achievable agricultural soil carbon sequestration across Europe from country-specific estimates

© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 24 vom: 25. Dez., Seite 6363-6380
1. Verfasser: Rodrigues, Leonor (VerfasserIn)
Weitere Verfasser: Hardy, Brieuc, Huyghebeart, Bruno, Fohrafellner, Julia, Fornara, Dario, Barančíková, Gabriela, Bárcena, Teresa G, De Boever, Maarten, Di Bene, Claudia, Feizienė, Dalia, Kätterer, Thomas, Laszlo, Peter, O'Sullivan, Lilian, Seitz, Daria, Leifeld, Jens
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article 4 per 1000 initiative Europe GHG mitigation agricultural management climate change soil carbon sequestration Soil Carbon 7440-44-0
LEADER 01000naa a22002652 4500
001 NLM330853759
003 DE-627
005 20231225212201.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15897  |2 doi 
028 5 2 |a pubmed24n1102.xml 
035 |a (DE-627)NLM330853759 
035 |a (NLM)34543496 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rodrigues, Leonor  |e verfasserin  |4 aut 
245 1 0 |a Achievable agricultural soil carbon sequestration across Europe from country-specific estimates 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.11.2021 
500 |a Date Revised 31.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a The role of soils in the global carbon cycle and in reducing GHG emissions from agriculture has been increasingly acknowledged. The '4 per 1000' (4p1000) initiative has become a prominent action plan for climate change mitigation and achieve food security through an annual increase in soil organic carbon (SOC) stocks by 0.4%, (i.e. 4‰ per year). However, the feasibility of the 4p1000 scenario and, more generally, the capacity of individual countries to implement soil carbon sequestration (SCS) measures remain highly uncertain. Here, we evaluated country-specific SCS potentials of agricultural land for 24 countries in Europe. Based on a detailed survey of available literature, we estimate that between 0.1% and 27% of the agricultural greenhouse gas (GHG) emissions can potentially be compensated by SCS annually within the next decades. Measures varied widely across countries, indicating differences in country-specific environmental conditions and agricultural practices. None of the countries' SCS potential reached the aspirational goal of the 4p1000 initiative, suggesting that in order to achieve this goal, a wider range of measures and implementation pathways need to be explored. Yet, SCS potentials exceeded those from previous pan-European modelling scenarios, underpinning the general need to include national/regional knowledge and expertise to improve estimates of SCS potentials. The complexity of the chosen SCS measurement approaches between countries ranked from tier 1 to tier 3 and included the effect of different controlling factors, suggesting that methodological improvements and standardization of SCS accounting are urgently required. Standardization should include the assessment of key controlling factors such as realistic areas, technical and practical feasibility, trade-offs with other GHG and climate change. Our analysis suggests that country-specific knowledge and SCS estimates together with improved data sharing and harmonization are crucial to better quantify the role of soils in offsetting anthropogenic GHG emissions at global level 
650 4 |a Journal Article 
650 4 |a 4 per 1000 initiative 
650 4 |a Europe 
650 4 |a GHG mitigation 
650 4 |a agricultural management 
650 4 |a climate change 
650 4 |a soil carbon sequestration 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Hardy, Brieuc  |e verfasserin  |4 aut 
700 1 |a Huyghebeart, Bruno  |e verfasserin  |4 aut 
700 1 |a Fohrafellner, Julia  |e verfasserin  |4 aut 
700 1 |a Fornara, Dario  |e verfasserin  |4 aut 
700 1 |a Barančíková, Gabriela  |e verfasserin  |4 aut 
700 1 |a Bárcena, Teresa G  |e verfasserin  |4 aut 
700 1 |a De Boever, Maarten  |e verfasserin  |4 aut 
700 1 |a Di Bene, Claudia  |e verfasserin  |4 aut 
700 1 |a Feizienė, Dalia  |e verfasserin  |4 aut 
700 1 |a Kätterer, Thomas  |e verfasserin  |4 aut 
700 1 |a Laszlo, Peter  |e verfasserin  |4 aut 
700 1 |a O'Sullivan, Lilian  |e verfasserin  |4 aut 
700 1 |a Seitz, Daria  |e verfasserin  |4 aut 
700 1 |a Leifeld, Jens  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 24 vom: 25. Dez., Seite 6363-6380  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:24  |g day:25  |g month:12  |g pages:6363-6380 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15897  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 24  |b 25  |c 12  |h 6363-6380