Semantically Adversarial Learnable Filters

We present an adversarial framework to craft perturbations that mislead classifiers by accounting for the image content and the semantics of the labels. The proposed framework combines a structure loss and a semantic adversarial loss in a multi-task objective function to train a fully convolutional...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 20., Seite 8075-8087
1. Verfasser: Shahin Shamsabadi, Ali (VerfasserIn)
Weitere Verfasser: Oh, Changjae, Cavallaro, Andrea
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM330850806
003 DE-627
005 20231225212156.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3112290  |2 doi 
028 5 2 |a pubmed24n1102.xml 
035 |a (DE-627)NLM330850806 
035 |a (NLM)34543196 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shahin Shamsabadi, Ali  |e verfasserin  |4 aut 
245 1 0 |a Semantically Adversarial Learnable Filters 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present an adversarial framework to craft perturbations that mislead classifiers by accounting for the image content and the semantics of the labels. The proposed framework combines a structure loss and a semantic adversarial loss in a multi-task objective function to train a fully convolutional neural network. The structure loss helps generate perturbations whose type and magnitude are defined by a target image processing filter. The semantic adversarial loss considers groups of (semantic) labels to craft perturbations that prevent the filtered image from being classified with a label in the same group. We validate our framework with three different target filters, namely detail enhancement, log transformation and gamma correction filters; and evaluate the adversarially filtered images against three classifiers, ResNet50, ResNet18 and AlexNet, pre-trained on ImageNet. We show that the proposed framework generates filtered images with a high success rate, robustness, and transferability to unseen classifiers. We also discuss objective and subjective evaluations of the adversarial perturbations 
650 4 |a Journal Article 
700 1 |a Oh, Changjae  |e verfasserin  |4 aut 
700 1 |a Cavallaro, Andrea  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 20., Seite 8075-8087  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:20  |g pages:8075-8087 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3112290  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 20  |h 8075-8087