|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM330850806 |
003 |
DE-627 |
005 |
20231225212156.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2021.3112290
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1102.xml
|
035 |
|
|
|a (DE-627)NLM330850806
|
035 |
|
|
|a (NLM)34543196
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shahin Shamsabadi, Ali
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Semantically Adversarial Learnable Filters
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.09.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We present an adversarial framework to craft perturbations that mislead classifiers by accounting for the image content and the semantics of the labels. The proposed framework combines a structure loss and a semantic adversarial loss in a multi-task objective function to train a fully convolutional neural network. The structure loss helps generate perturbations whose type and magnitude are defined by a target image processing filter. The semantic adversarial loss considers groups of (semantic) labels to craft perturbations that prevent the filtered image from being classified with a label in the same group. We validate our framework with three different target filters, namely detail enhancement, log transformation and gamma correction filters; and evaluate the adversarially filtered images against three classifiers, ResNet50, ResNet18 and AlexNet, pre-trained on ImageNet. We show that the proposed framework generates filtered images with a high success rate, robustness, and transferability to unseen classifiers. We also discuss objective and subjective evaluations of the adversarial perturbations
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Oh, Changjae
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cavallaro, Andrea
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 30(2021) vom: 20., Seite 8075-8087
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2021
|g day:20
|g pages:8075-8087
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2021.3112290
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2021
|b 20
|h 8075-8087
|