An Efficient High-Order Meshless Method for Advection-Diffusion Equations on Time-Varying Irregular Domains

We present a high-order radial basis function finite difference (RBF-FD) framework for the solution of advection-diffusion equations on time-varying domains. Our framework is based on a generalization of the recently developed Overlapped RBF-FD method that utilizes a novel automatic procedure for co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 445(2021) vom: 15. Nov.
1. Verfasser: Shankar, Varun (VerfasserIn)
Weitere Verfasser: Wright, Grady B, Fogelson, Aaron L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article RBF-FD Radial basis function advection-diffusion high-order method meshfree semi-Lagrangian
LEADER 01000caa a22002652c 4500
001 NLM330807897
003 DE-627
005 20250302122503.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2021.110633  |2 doi 
028 5 2 |a pubmed25n1102.xml 
035 |a (DE-627)NLM330807897 
035 |a (NLM)34538887 
035 |a (PII)110633 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shankar, Varun  |e verfasserin  |4 aut 
245 1 3 |a An Efficient High-Order Meshless Method for Advection-Diffusion Equations on Time-Varying Irregular Domains 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a high-order radial basis function finite difference (RBF-FD) framework for the solution of advection-diffusion equations on time-varying domains. Our framework is based on a generalization of the recently developed Overlapped RBF-FD method that utilizes a novel automatic procedure for computing RBF-FD weights on stencils in variable-sized regions around stencil centers. This procedure eliminates the overlap parameter δ, thereby enabling tuning-free assembly of RBF-FD differentiation matrices on moving domains. In addition, our framework utilizes a simple and efficient procedure for updating differentiation matrices on moving domains tiled by node sets of time-varying cardinality. Finally, advection-diffusion in time-varying domains is handled through a combination of rapid node set modification, a new high-order semi-Lagrangian method that utilizes the new tuning-free overlapped RBF-FD method, and a high-order time-integration method. The resulting framework has no tuning parameters and has O(N logN) time complexity. We demonstrate high-orders of convergence for advection-diffusion equations on time-varying 2D and 3D domains for both small and large Peclet numbers. We also present timings that verify our complexity estimates. Finally, we utilize our method to solve a coupled 3D problem motivated by models of platelet aggregation and coagulation, once again demonstrating high-order convergence rates on a moving domain 
650 4 |a Journal Article 
650 4 |a RBF-FD 
650 4 |a Radial basis function 
650 4 |a advection-diffusion 
650 4 |a high-order method 
650 4 |a meshfree 
650 4 |a semi-Lagrangian 
700 1 |a Wright, Grady B  |e verfasserin  |4 aut 
700 1 |a Fogelson, Aaron L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 445(2021) vom: 15. Nov.  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnas 
773 1 8 |g volume:445  |g year:2021  |g day:15  |g month:11 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2021.110633  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 445  |j 2021  |b 15  |c 11