Sparse Coding Driven Deep Decision Tree Ensembles for Nucleus Segmentation in Digital Pathology Images

Automating generalized nucleus segmentation has proven to be non-trivial and challenging in digital pathology. Most existing techniques in the field rely either on deep neural networks or on shallow learning-based cascading models. The former lacks theoretical understanding and tends to degrade perf...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 8088-8101
1. Verfasser: Song, Jie (VerfasserIn)
Weitere Verfasser: Xiao, Liang, Molaei, Mohsen, Lian, Zhichao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM330760521
003 DE-627
005 20231225211958.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3112057  |2 doi 
028 5 2 |a pubmed24n1102.xml 
035 |a (DE-627)NLM330760521 
035 |a (NLM)34534088 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Jie  |e verfasserin  |4 aut 
245 1 0 |a Sparse Coding Driven Deep Decision Tree Ensembles for Nucleus Segmentation in Digital Pathology Images 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2021 
500 |a Date Revised 14.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Automating generalized nucleus segmentation has proven to be non-trivial and challenging in digital pathology. Most existing techniques in the field rely either on deep neural networks or on shallow learning-based cascading models. The former lacks theoretical understanding and tends to degrade performance when only limited amounts of training data are available while the latter often suffers from limitations for generalization. To address these issues, we propose sparse coding driven deep decision tree ensembles (ScD2TE), an easily trained yet powerful representation learning approach with performance highly competitive to deep neural networks in the generalized nucleus segmentation task. We explore the possibility of stacking several layers based on fast convolutional sparse coding-decision tree ensemble pairwise modules and generate a layer-wise encoder-decoder architecture with intra-decoder and inter-encoder dense connectivity patterns. Under this architecture, all the encoders share the same assumption across the different layers to represent images and interact with their decoders to give fast convergence. Compared with deep neural networks, our proposed ScD2TE does not require back-propagation computation and depends on less hyper-parameters. ScD2TE is able to achieve a fast end-to-end pixel-wise training in a layer-wise manner. We demonstrated the superiority of our segmentation method by evaluating it on the multi-disease state and multi-organ dataset where consistently higher performances were obtained for comparison against other state-of-the-art deep learning techniques and cascading methods with various connectivity patterns 
650 4 |a Journal Article 
700 1 |a Xiao, Liang  |e verfasserin  |4 aut 
700 1 |a Molaei, Mohsen  |e verfasserin  |4 aut 
700 1 |a Lian, Zhichao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 8088-8101  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:8088-8101 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3112057  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 8088-8101