ChipQA : No-Reference Video Quality Prediction via Space-Time Chips

We propose a new model for no-reference video quality assessment (VQA). Our approach uses a new idea of highly-localized space-time (ST) slices called Space-Time Chips (ST Chips). ST Chips are localized cuts of video data along directions that implicitly capture motion. We use perceptually-motivated...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 17., Seite 8059-8074
1. Verfasser: Ebenezer, Joshua Peter (VerfasserIn)
Weitere Verfasser: Shang, Zaixi, Wu, Yongjun, Wei, Hai, Sethuraman, Sriram, Bovik, Alan C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM330760513
003 DE-627
005 20250302121812.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3112055  |2 doi 
028 5 2 |a pubmed25n1102.xml 
035 |a (DE-627)NLM330760513 
035 |a (NLM)34534087 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ebenezer, Joshua Peter  |e verfasserin  |4 aut 
245 1 0 |a ChipQA  |b No-Reference Video Quality Prediction via Space-Time Chips 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a new model for no-reference video quality assessment (VQA). Our approach uses a new idea of highly-localized space-time (ST) slices called Space-Time Chips (ST Chips). ST Chips are localized cuts of video data along directions that implicitly capture motion. We use perceptually-motivated bandpass and normalization models to first process the video data, and then select oriented ST Chips based on how closely they fit parametric models of natural video statistics. We show that the parameters that describe these statistics can be used to reliably predict the quality of videos, without the need for a reference video. The proposed method implicitly models ST video naturalness, and deviations from naturalness. We train and test our model on several large VQA databases, and show that our model achieves state-of-the-art performance at reduced cost, without requiring motion computation 
650 4 |a Journal Article 
700 1 |a Shang, Zaixi  |e verfasserin  |4 aut 
700 1 |a Wu, Yongjun  |e verfasserin  |4 aut 
700 1 |a Wei, Hai  |e verfasserin  |4 aut 
700 1 |a Sethuraman, Sriram  |e verfasserin  |4 aut 
700 1 |a Bovik, Alan C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 17., Seite 8059-8074  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:17  |g pages:8059-8074 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3112055  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 17  |h 8059-8074