Bilateral Asymmetry Guided Counterfactual Generating Network for Mammogram Classification

Mammogram benign or malignant classification with only image-level labels is challenging due to the absence of lesion annotations. Motivated by the symmetric prior that the lesions on one side of breasts rarely appear in the corresponding areas on the other side, we explore to answer a counterfactua...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 7980-7994
1. Verfasser: Wang, Churan (VerfasserIn)
Weitere Verfasser: Li, Jing, Zhang, Fandong, Sun, Xinwei, Dong, Hao, Yu, Yizhou, Wang, Yizhou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM330760505
003 DE-627
005 20231225211957.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3112053  |2 doi 
028 5 2 |a pubmed24n1102.xml 
035 |a (DE-627)NLM330760505 
035 |a (NLM)34534086 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Churan  |e verfasserin  |4 aut 
245 1 0 |a Bilateral Asymmetry Guided Counterfactual Generating Network for Mammogram Classification 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2021 
500 |a Date Revised 14.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Mammogram benign or malignant classification with only image-level labels is challenging due to the absence of lesion annotations. Motivated by the symmetric prior that the lesions on one side of breasts rarely appear in the corresponding areas on the other side, we explore to answer a counterfactual question to identify the lesion areas. This counterfactual question means: given an image with lesions, how would the features have behaved if there were no lesions in the image? To answer this question, we derive a new theoretical result based on the symmetric prior. Specifically, by building a causal model that entails such a prior for bilateral images, we identify to optimize the distances in distribution between i) the counterfactual features and the target side's features in lesion-free areas; and ii) the counterfactual features and the reference side's features in lesion areas. To realize these optimizations for better benign/malignant classification, we propose a counterfactual generative network, which is mainly composed of Generator Adversarial Network and a prediction feedback mechanism, they are optimized jointly and prompt each other. Specifically, the former can further improve the classi?cation performance by generating counterfactual features to calculate lesion areas. On the other hand, the latter helps counterfactual generation by the supervision of classification loss. The utility of our method and the effectiveness of each module in our model can be verified by state-of-the-art performance on INBreast and an in-house dataset and ablation studies 
650 4 |a Journal Article 
700 1 |a Li, Jing  |e verfasserin  |4 aut 
700 1 |a Zhang, Fandong  |e verfasserin  |4 aut 
700 1 |a Sun, Xinwei  |e verfasserin  |4 aut 
700 1 |a Dong, Hao  |e verfasserin  |4 aut 
700 1 |a Yu, Yizhou  |e verfasserin  |4 aut 
700 1 |a Wang, Yizhou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 7980-7994  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:7980-7994 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3112053  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 7980-7994