Learning Modal-Invariant Angular Metric by Cyclic Projection Network for VIS-NIR Person Re-Identification

Person re-identification across visible and near-infrared cameras (VIS-NIR Re-ID) has widespread applications. The challenge of this task lies in heterogeneous image matching. Existing methods attempt to learn discriminative features via complex feature extraction strategies. Nevertheless, the distr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 8019-8033
1. Verfasser: Zhang, Quan (VerfasserIn)
Weitere Verfasser: Lai, Jianhuang, Xie, Xiaohua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM330760467
003 DE-627
005 20231225211957.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3112035  |2 doi 
028 5 2 |a pubmed24n1102.xml 
035 |a (DE-627)NLM330760467 
035 |a (NLM)34534082 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Quan  |e verfasserin  |4 aut 
245 1 0 |a Learning Modal-Invariant Angular Metric by Cyclic Projection Network for VIS-NIR Person Re-Identification 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2021 
500 |a Date Revised 14.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Person re-identification across visible and near-infrared cameras (VIS-NIR Re-ID) has widespread applications. The challenge of this task lies in heterogeneous image matching. Existing methods attempt to learn discriminative features via complex feature extraction strategies. Nevertheless, the distributions of visible and near-infrared features are disparate caused by modal gap, which significantly affects feature metric and makes the performance of the existing models poor. To address this problem, we propose a novel approach from the perspective of metric learning. We conduct metric learning on a well-designed angular space. Geometrically, features are mapped from the original space to the hypersphere manifold, which eliminates the variations of feature norm and concentrates on the angle between the feature and the target category. Specifically, we propose a cyclic projection network (CPN) that transforms features into an angle-related space while identity information is preserved. Furthermore, we proposed three kinds of loss functions, AICAL, LAL and DAL, in angular space for angular metric learning. Multiple experiments on two existing public datasets, SYSU-MM01 and RegDB, show that performance of our method greatly exceeds the SOTA performance 
650 4 |a Journal Article 
700 1 |a Lai, Jianhuang  |e verfasserin  |4 aut 
700 1 |a Xie, Xiaohua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 8019-8033  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:8019-8033 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3112035  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 8019-8033