Joint Feature Optimization and Fusion for Compressed Action Recognition

Recent methods including CoViAR and DMC-Net provide a new paradigm for action recognition since they are directly targeted at compressed videos (e.g., MPEG4 files). It avoids the cumbersome decoding procedure of traditional methods, and leverages the pre-encoded motion vectors and residuals in compr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 7926-7937
1. Verfasser: Li, Hanhui (VerfasserIn)
Weitere Verfasser: Jiang, Xudong, Guan, Boliang, Tan, Raymond Rui Ming, Wang, Ruomei, Thalmann, Nadia Magnenat
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM330760424
003 DE-627
005 20231225211957.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3112008  |2 doi 
028 5 2 |a pubmed24n1102.xml 
035 |a (DE-627)NLM330760424 
035 |a (NLM)34534079 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Hanhui  |e verfasserin  |4 aut 
245 1 0 |a Joint Feature Optimization and Fusion for Compressed Action Recognition 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent methods including CoViAR and DMC-Net provide a new paradigm for action recognition since they are directly targeted at compressed videos (e.g., MPEG4 files). It avoids the cumbersome decoding procedure of traditional methods, and leverages the pre-encoded motion vectors and residuals in compressed videos to complete recognition efficiently. However, motion vectors and residuals are noisy, sparse and highly correlated information, which cannot be effectively exploited by plain and separated networks. To tackle these issues, we propose a joint feature optimization and fusion framework that better utilizes motion vectors and residuals in the following three aspects. (i) We model the feature optimization problem as a reconstruction process that represents features by a set of bases, and propose a joint feature optimization module that extracts bases in the both modalities. (ii) A low-rank non-local attention module, which combines the non-local operation with the low-rank constraint, is proposed to tackle the noise and sparsity problem during the feature reconstruction process. (iii) A lightweight feature fusion module and a self-adaptive knowledge distillation method are introduced, which use motion vectors and residuals to generate predictions similar to those from networks with optical flows. With these proposed components embedded in a baseline network, the proposed network not only achieves the state-of-the-art performance on HMDB-51 and UCF-101, but also maintains its advantage in computational complexity 
650 4 |a Journal Article 
700 1 |a Jiang, Xudong  |e verfasserin  |4 aut 
700 1 |a Guan, Boliang  |e verfasserin  |4 aut 
700 1 |a Tan, Raymond Rui Ming  |e verfasserin  |4 aut 
700 1 |a Wang, Ruomei  |e verfasserin  |4 aut 
700 1 |a Thalmann, Nadia Magnenat  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 7926-7937  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:7926-7937 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3112008  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 7926-7937