Leaf size modulation by cytokinins in sesame plants

Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 167(2021) vom: 01. Okt., Seite 763-770
1. Verfasser: Mehmood, Maryam (VerfasserIn)
Weitere Verfasser: Pérez-Llorca, Marina, Casadesús, Andrea, Farrakh, Sumaira, Munné-Bosch, Sergi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Drought stress tolerance Hormonal crosstalk Leaf growth Leaf size Phytohormones UHPLC-MS/MS Water deficit Cytokinins Plant Growth Regulators
Beschreibung
Zusammenfassung:Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Phytohormones play important roles in controlling leaf size and in the modulation of various stress responses, including drought. In this study, hormone profiling analyses by ultra high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-MS/MS) was performed in leaves collected at three stages of active leaf growth to unravel which phytohormones modulate leaf size in sesame (Sesamum indicum L.) plants, an important oil-rich crop. Furthermore, endogenous contents of phytohormones were measured in parallel to various stress markers in sesame plants exposed to mild water deficit conditions by withholding water in potted plants for one week. Results revealed a major role of cytokinins and auxin in the modulation of leaf growth in sesame plants (which increased by 21.5 and 2.1-fold, respectively, with leaf growth), as well as a putative antagonistic response between jasmonic acid and salicylic acid during leaf development. Furthermore, growth arrest during water deficit stress appeared to be modulated by cytokinins, the endogenous contents of which decreased (by 48%) in parallel with ABA increases (by 59%). Reductions in the contents of the active cytokinin trans-zeatin occurred in parallel with increases in isopentenyladenine contents under drought, which suggests a partial metabolic limitation in cytokinin biosynthesis in leaves upon water deficit stress. These results provide useful information for the hormonal modulation of leaf size and the improvement of leaf growth and production in sesame plants through manipulation of the levels of key regulatory phytohormones
Beschreibung:Date Completed 13.10.2021
Date Revised 13.10.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2021.09.013