Recognizing Predictive Substructures With Subgraph Information Bottleneck

The emergence of Graph Convolutional Network (GCN) has greatly boosted the progress of graph learning. However, two disturbing factors, noise and redundancy in graph data, and lack of interpretation for prediction results, impede further development of GCN. One solution is to recognize a predictive...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 3 vom: 14. Feb., Seite 1650-1663
1. Verfasser: Yu, Junchi (VerfasserIn)
Weitere Verfasser: Xu, Tingyang, Rong, Yu, Bian, Yatao, Huang, Junzhou, He, Ran
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM330624547
003 DE-627
005 20240207231936.0
007 cr uuu---uuuuu
008 231225s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3112205  |2 doi 
028 5 2 |a pubmed24n1283.xml 
035 |a (DE-627)NLM330624547 
035 |a (NLM)34520347 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Junchi  |e verfasserin  |4 aut 
245 1 0 |a Recognizing Predictive Substructures With Subgraph Information Bottleneck 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The emergence of Graph Convolutional Network (GCN) has greatly boosted the progress of graph learning. However, two disturbing factors, noise and redundancy in graph data, and lack of interpretation for prediction results, impede further development of GCN. One solution is to recognize a predictive yet compressed subgraph to get rid of the noise and redundancy and obtain the interpretable part of the graph. This setting of subgraph is similar to the information bottleneck (IB) principle, which is less studied on graph-structured data and GCN. Inspired by the IB principle, we propose a novel subgraph information bottleneck (SIB) framework to recognize such subgraphs, named IB-subgraph. However, the intractability of mutual information and the discrete nature of graph data makes the objective of SIB notoriously hard to optimize. To this end, we introduce a bilevel optimization scheme coupled with a mutual information estimator for irregular graphs. Moreover, we propose a continuous relaxation for subgraph selection with a connectivity loss for stabilization. We further theoretically prove the error bound of our estimation scheme for mutual information and the noise-invariant nature of IB-subgraph. Extensive experiments on graph learning and large-scale point cloud tasks demonstrate the superior property of IB-subgraph 
650 4 |a Journal Article 
700 1 |a Xu, Tingyang  |e verfasserin  |4 aut 
700 1 |a Rong, Yu  |e verfasserin  |4 aut 
700 1 |a Bian, Yatao  |e verfasserin  |4 aut 
700 1 |a Huang, Junzhou  |e verfasserin  |4 aut 
700 1 |a He, Ran  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 3 vom: 14. Feb., Seite 1650-1663  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:3  |g day:14  |g month:02  |g pages:1650-1663 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3112205  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 3  |b 14  |c 02  |h 1650-1663