Phase-Property Diagrams for Multicomponent Oxide Systems toward Materials Libraries

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 43 vom: 30. Okt., Seite e2102301
1. Verfasser: Velasco, Leonardo (VerfasserIn)
Weitere Verfasser: Castillo, Juan S, Kante, Mohana V, Olaya, Jhon J, Friederich, Pascal, Hahn, Horst
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article high entropy materials high-throughput techniques machine learning materials libraries phase diagram virtual materials
LEADER 01000caa a22002652c 4500
001 NLM330568566
003 DE-627
005 20250302115123.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202102301  |2 doi 
028 5 2 |a pubmed25n1101.xml 
035 |a (DE-627)NLM330568566 
035 |a (NLM)34514669 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Velasco, Leonardo  |e verfasserin  |4 aut 
245 1 0 |a Phase-Property Diagrams for Multicomponent Oxide Systems toward Materials Libraries 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Exploring the vast compositional space offered by multicomponent systems or high entropy materials using the traditional route of materials discovery, one experiment at a time, is prohibitive in terms of cost and required time. Consequently, the development of high-throughput experimental methods, aided by machine learning and theoretical predictions will facilitate the search for multicomponent materials in their compositional variety. In this study, high entropy oxides are fabricated and characterized using automated high-throughput techniques. For intuitive visualization, a graphical phase-property diagram correlating the crystal structure, the chemical composition, and the band gap are introduced. Interpretable machine learning models are trained for automated data analysis and to speed up data comprehension. The establishment of materials libraries of multicomponent systems correlated with their properties (as in the present work), together with machine learning-based data analysis and theoretical approaches are opening pathways toward virtual development of novel materials for both functional and structural applications 
650 4 |a Journal Article 
650 4 |a high entropy materials 
650 4 |a high-throughput techniques 
650 4 |a machine learning 
650 4 |a materials libraries 
650 4 |a phase diagram 
650 4 |a virtual materials 
700 1 |a Castillo, Juan S  |e verfasserin  |4 aut 
700 1 |a Kante, Mohana V  |e verfasserin  |4 aut 
700 1 |a Olaya, Jhon J  |e verfasserin  |4 aut 
700 1 |a Friederich, Pascal  |e verfasserin  |4 aut 
700 1 |a Hahn, Horst  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 43 vom: 30. Okt., Seite e2102301  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:33  |g year:2021  |g number:43  |g day:30  |g month:10  |g pages:e2102301 
856 4 0 |u http://dx.doi.org/10.1002/adma.202102301  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 43  |b 30  |c 10  |h e2102301